
Chef Cheatsheet
A comprehensive cheat sheet for Chef, covering essential concepts, commands, resources, and best practices for infrastructure automation and

configuration management.

Core Concepts & Architecture

Knife Command Reference

Common Chef Resources

Key Components

Chef Server Central repository for cookbooks, roles,

environments, and node metadata. The

heart of the Chef infrastructure.

Chef

Workstation

Local machine used to develop, test, and

upload cookbooks to the Chef Server.

Your development environment.

Chef Client Agent installed on each node (server)

that pulls configuration information from

the Chef Server and applies it to the

node.

Chef Infra

Client

Command-line interface (CLI) to run the

Chef Infra Client (formerly just Chef

Client) on a node. chef-client

command.

Chef

Automate

Provides visibility and control over your

Chef infrastructure. Includes features like

compliance scanning and reporting.

Ohai A tool within the Chef client that gathers

system configuration data (e.g., OS,

network, CPU) and makes it available as

node attributes.

Chef Workflow

1. Develop Cookbooks: Create and modify cookbooks

on your Chef Workstation.

2. Test Cookbooks: Use testing tools like Test Kitchen

and ChefSpec to ensure cookbooks function

correctly.

3. Upload Cookbooks: Upload tested cookbooks to the

Chef Server.

4. Configure Nodes: Define node attributes and run

lists, either directly or via roles and environments.

5. Run Chef Client: Execute chef-client on each

node to apply the configurations defined in the

cookbooks.

6. Converge: The process of bringing a node into the

desired state defined by the cookbooks.

Chef Objects

Cookbooks The fundamental unit of configuration in

Chef. Contain recipes, attributes, and

other resources that define how to

configure a system.

Recipes Contain instructions (resources) that

specify how to configure a specific

aspect of a node. Written in Ruby.

Resources Represent a desired state for a system

component (e.g., a file, a package, a

service). Chef provides a wide range of

built-in resources.

Attributes Variables that define aspects of a node’s

configuration. Used to customize

cookbooks for different nodes or

environments.

Roles A way to group and apply cookbooks,

recipes, and attributes to nodes based

on their function (e.g., web server,

database server).

Environments Define different stages of your

infrastructure (e.g., development,

staging, production). Allow you to apply

different configurations to nodes in

different environments.

Node Management

knife node list Lists all nodes registered

with the Chef Server.

knife node show

<node_name>

Displays the attributes and

run list for a specific node.

knife node edit

<node_name>

Opens the node data in your

default editor for

modification.

knife node delete

<node_name>

Deletes a node from the

Chef Server.

knife node run_list

add <node_name>

'role[<role_name>]'

Adds a role to a node’s run

list.

knife node run_list

remove <node_name>

'recipe[<recipe_name>]

'

Removes a recipe from a

node’s run list.

Cookbook Management

knife cookbook create

<cookbook_name>

Generates a basic

cookbook structure.

knife cookbook upload

<cookbook_name>

Uploads a cookbook to the

Chef Server.

knife cookbook

download

<cookbook_name>

Downloads a cookbook

from the Chef Server.

knife cookbook list Lists all cookbooks available

on the Chef Server.

knife cookbook show

<cookbook_name>

<version>

Shows details for a specific

cookbook version.

knife cookbook delete

<cookbook_name>

<version>

Deletes a cookbook from

the Chef Server.

Role and Environment Management

knife role create

<role_name>

Creates a new role.

knife role from file

<role_name>.json

Creates a role from a

JSON file.

knife role show

<role_name>

Displays details for a role.

knife environment create

<environment_name>

Creates a new

environment.

knife environment from

file

<environment_name>.json

Creates an environment

from a JSON file.

knife environment show

<environment_name>

Displays details for an

environment.

Page 1 of 3 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/555-chef-cheatsheet
http://cheatsheetshero.com/user/all/555-chef-cheatsheet
http://cheatsheetshero.com/user/all/555-chef-cheatsheet
https://cheatsheetshero.com/

Chef Best Practices

File Management

Creates or modifies a file with specified content,

ownership, and permissions.

file '/path/to/file' do

 content 'This is the content of the file'

 owner 'user'

 group 'group'

 mode '0644'

 action :create

end

Copies a file from the cookbook’s files directory to a

specified destination on the node.

cookbook_file '/path/to/destination' do

 source 'source_file_in_cookbook'

 owner 'user'

 group 'group'

 mode '0644'

 action :create

end

Generates a file from a template (ERB) file in the

cookbook’s templates directory.

template '/path/to/destination' do

 source 'template_file.erb'

 owner 'user'

 group 'group'

 mode '0644'

 variables({:variable1 => 'value1',

:variable2 => 'value2'})

 action :create

end

Creates a directory with specified ownership and

permissions.

directory '/path/to/directory' do

 owner 'user'

 group 'group'

 mode '0755'

 action :create

end

Package and Service Management

Installs, upgrades, or removes a package on the node.

package 'package_name' do

 action :install

 version '1.2.3'

end

Manages a system service, including starting, stopping,

enabling, and disabling.

service 'service_name' do

 action [:enable, :start]

 supports :status => true, :restart => true

end

Execution and User Management

Executes a command on the node.

execute 'command_name' do

 command 'some_command'

 user 'user'

 cwd '/path/to/directory'

end

Creates, modifies, or deletes a user account on the node.

user 'user_name' do

 action :create

 home '/home/user_name'

 shell '/bin/bash'

 password 'hashed_password'

end

Creates, modifies, or deletes a group on the node.

group 'group_name' do

 action :create

 members ['user1', 'user2']

end

Cookbook Structure

A well-structured cookbook is essential for maintainability

and reusability. Common directories include:

recipes/ : Contains the main configuration logic.

attributes/ : Defines node attributes.

templates/ : Stores ERB template files.

files/ : Contains static files to be copied to nodes.

resources/ : Custom resources (advanced).

providers/ : Custom providers for custom

resources (advanced).

libraries/ : Ruby helper functions.

test/ : Unit and integration tests.

Idempotency

Ensure that your recipes are idempotent, meaning that

running them multiple times has the same effect as

running them once. Use not_if and only_if guards

to prevent unnecessary actions.

This ensures the file is only created if it doesn’t already

exist.

file '/path/to/file' do

 content 'This is the content of the file'

 not_if { ::File.exist?('/path/to/file') }

end

Page 2 of 3 https://cheatsheetshero.com

https://cheatsheetshero.com/

Testing

Use testing tools like ChefSpec and Test Kitchen to

thoroughly test your cookbooks before deploying them to

production. ChefSpec provides unit testing capabilities,

while Test Kitchen allows you to test your cookbooks in a

virtualized environment.

ChefSpec Example:

require 'chefspec'

describe 'my_cookbook::default' do

 let(:chef_run) {

ChefSpec::SoloRunner.converge(described_recipe

) }

 it 'creates a file' do

 expect(chef_run).to

create_file('/path/to/file')

 end

end

Attribute Management

Use attributes to externalize configuration values and

make your cookbooks more flexible. Define default

attributes in attributes/default.rb and override them

in roles, environments, or node-specific attributes.

Attribute precedence:

1. default attributes (lowest precedence)

2. force_default attributes

3. normal attributes

4. override attributes

5. force_override attributes (highest precedence)

Page 3 of 3 https://cheatsheetshero.com

https://cheatsheetshero.com/

