
Karma Testing Cheatsheet
A comprehensive cheat sheet for Karma, the test runner for JavaScript. This guide covers configuration, common commands, debugging techniques,

and best practices to streamline your testing workflow.

Karma Configuration

Running Karma Tests

Debugging Karma Tests

Advanced Karma Features

Basic Configuration File (karma.conf.js)

The karma.conf.js file configures Karma’s behavior. It

specifies the files to be included in the test environment,

testing framework, browsers to launch, and reporters to

use.

module.exports = function(config) {

 config.set({

 frameworks: ['jasmine'],

 files: [

 'src/**/*.js',

 'test/**/*.spec.js'

],

 reporters: ['progress'],

 port: 9876,

 colors: true,

 logLevel: config.LOG_INFO,

 browsers: ['Chrome'],

 autoWatch: true,

 singleRun: false

 });

};

Key Configuration Options

frame

works

An array of testing frameworks to use (e.g.,

‘jasmine’, ‘mocha’, ‘qunit’).

file

s

An array of file patterns to load. Order matters;

dependencies should be listed first.

exclu

de

An array of file patterns to exclude from

loading.

repor

ters

An array of reporters to use (e.g., ‘progress’,

‘dots’, ‘coverage’).

port The port Karma will listen on.

brows

ers

An array of browsers to launch for testing (e.g.,

‘Chrome’, ‘Firefox’, ‘Safari’).

autoW

atch

If true, Karma will watch files for changes and

rerun tests automatically.

singl

eRun

If true, Karma will run tests once and exit.

Preprocessors

Preprocessors apply transformations to files before they

are served to the browser. Common use cases include

transpiling code (e.g., Babel for ES6) and generating

coverage reports.

preprocessors: {

 'src/**/*.js': ['babel', 'coverage']

},

Basic Commands

karma

start

Starts the Karma test runner using the

configuration file (karma.conf.js).

karma

run

Triggers a test run without restarting the Karma

server. Requires the server to be already

running.

karma

init

Helps create a karma.conf.js file in the current

directory.

Command-Line Options

You can override configuration options from the

command line using -- . For example, to run tests in

Firefox, use karma start --browsers Firefox .

--single-run : Override the singleRun setting in the

config file

--browsers : Override the browsers setting in the

config file

--port : Override the port setting in the config file

Example Commands

Run tests in Chrome once and exit:

karma start --single-run --browsers Chrome

Run tests and keep watching for changes:

karma start

Debugging Techniques

Karma provides several ways to debug your tests,

including using browser developer tools and the

browserConsoleLog configuration option.

Using Browser Developer Tools

1. Open the

browser’s

developer tools

Launch your tests using Karma,

then open the developer tools in

the browser (e.g., Chrome

DevTools, Firefox Developer

Tools).

2. Set breakpoints Insert debugger; statements in

your code or set breakpoints in

the developer tools.

3. Inspect

variables

Use the console or debugger to

inspect variables and step

through your code.

browserConsoleLog

The browserConsoleLog configuration option allows

you to log messages from the browser console to the

Karma console.

config.set({

 browserConsoleLogOptions: {

 level: 'debug',

 format: '%b %T: %m',

 terminal: true

 }

});

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/550-karma-testing-cheatsheet
http://cheatsheetshero.com/user/all/550-karma-testing-cheatsheet
http://cheatsheetshero.com/user/all/550-karma-testing-cheatsheet
https://cheatsheetshero.com/

Custom Launchers

You can configure custom browser launchers to run tests

in specific environments, such as headless Chrome or

custom browser configurations.

customLaunchers: {

 ChromeHeadlessCI: {

 base: 'ChromeHeadless',

 flags: ['--no-sandbox']

 }

},

browsers: ['ChromeHeadlessCI']

Plugins

Karma supports a wide range of plugins to extend its

functionality, including reporters, preprocessors, and

frameworks. Install plugins using npm and configure them

in your karma.conf.js file.

Reporters

progres

s

Displays a progress bar and test results in the

console.

dots Displays test results using dots in the

console.

coverag

e

Generates code coverage reports.

junit Generates JUnit-style XML reports.

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

