CH EAT}E E Hi | UML Cheat Sheet

SH EETS A concise cheat sheet covering the essential aspects of Unified Modeling Language (UML), including diagrams, relationships, and notation.

UML Diagrams Overview

Structural Diagrams Behavioral Diagrams

Class Diagram: Represents the static structure of a system, showing classes, attributes, Use Case Diagram: Captures the functional requirements of a system from the user’s
operations, and relationships. perspective.
Object Diagram: Shows instances of classes and their relationships at a specific point in Activity Diagram: Models the flow of activities within a system or business process.
time.

State Machine Diagram: Describes the states an object can be in and the transitions
Component Diagram: lllustrates the organization and relationships of software between those states in response to events.
components.

Sequence Diagram: lllustrates interactions between objects in a time-ordered sequence.
Deployment Diagram: Depicts the physical deployment of software components to - . - .)
Communication Diagram: Similar to sequence diagrams, but focuses on object
hardware nodes.
relationships rather than time sequence. Also known as collaboration diagram.

Package Diagram: Organizes model elements into packages to manage complexity. . . . X . . i X o
Interaction Overview Diagram: Provides a high-level view of the interactions within a

Profile Diagram: Allows defining custom stereotypes, tagged values, and constraints to system, combining aspects of activity and sequence diagrams.
extend UML for specific domains. L. . i i .
Timing Diagram: Shows the change in state or value of one or more objects over time.

Class Diagram Elements

Classes Relationships
Notation: Represented as a rectangle divided into three sections: class name, Association: A general relationship between classes, indicated by a solid line.
attributes, and operations. Can be unidirectional or bidirectional.
Attributes: Characteristics or properties of a class. Indicated by name, type, and Aggregation: A 'has-a’ relationship representing a whole-part hierarchy, where
visibility (e.g., +name: String). the part can exist independently of the whole. Represented by a

. . . X line with an open diamond at the whole end.
Operations: Actions or functions that a class can perform. Indicated by name,

parameters, and return type (e.g., +getName(): String). Composition: A strong ‘has-a’ relationship where the part cannot exist
. . independently of the whole. Represented by a line with a filled
Visibility: + Public, - Private, # Protected, ~ Package. .
diamond at the whole end.
Generalization An ‘is-a’ relationship where one class inherits from another.
(Inheritance): Represented by a line with an open triangle at the parent class end.
Realization: A relationship between an interface and a class that implements it.

Represented by a dashed line with an open triangle at the interface

end.

Dependency: A weaker form of relationship indicating that one class uses or
depends on another. Represented by a dashed line.

Use Case Diagram Elements

Actors Relationships System Boundary
Represented as stick figures. Actors interact with the Association: Represents interaction between an A rectangle that encloses the use cases, representing the
system but are external to it. Can be human users, actor and a use case. A solid line boundary of the system.
external systems, or hardware devices. connects the actor to the use case.
Include: Indicates that one use case includes
Use Cases

the functionality of another.

. Represented by a dashed line with an
Represented as ovals. Use cases are high-level o .
. § arrow pointing to the included use case
descriptions of what a system should do from the actor’s
. and labeled <<include>> .
perspective.

Extend: Indicates that one use case extends the
functionality of another. Represented
by a dashed line with an arrow pointing
to the extended use case and labeled

<<extend>> .

Generalization: An ‘is-a’ relationship between use
cases, indicating that one use case
inherits the behavior of another.
Represented by a solid line with an
open triangle pointing to the parent use

case.

Activity & Sequence Diagrams

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/536-uml-cheat-sheet
http://cheatsheetshero.com/user/all/536-uml-cheat-sheet
http://cheatsheetshero.com/user/all/536-uml-cheat-sheet
https://cheatsheetshero.com/

Activity Diagram Elements

Sequence Diagram Elements

Initial Node:
Activity:

Decision
Node:

Merge Node:

Fork Node:

Join Node:

Final Node:

Page 2 of 2

Represents the starting point of the activity. Shown as a filled circle.
Represents a task or action performed. Shown as a rounded rectangle.

Represents a branching point in the activity flow. Shown as a diamond.

Represents a point where multiple flows converge into one. Shown as a
diamond.

Splits a single flow of control into multiple concurrent flows. Shown as a
bar.

Synchronizes multiple concurrent flows into a single flow. Shown as a
bar.

Represents the end of the activity. Shown as a bullseye.

Lifeline:

Activation Box:

Message:

Synchronous

Message:

Asynchronous
Message:

Return Message:

Represents the existence of an object over time. Shown as a

vertical dashed line.

Indicates when an object is performing an action. Shown as a thin
rectangle on the lifeline.

Represents communication between objects. Shown as an arrow
from one lifeline to another.

The sender waits for a response. Shown as a solid arrow.

The sender does not wait for a response. Shown as an open

arrow.

Represents the response to a synchronous message. Shown as a

dashed arrow.

https://cheatsheetshero.com

https://cheatsheetshero.com/

