
Prometheus Cheatsheet
A quick reference guide for Prometheus, covering essential concepts, PromQL queries, configuration, and best practices for monitoring and alerting

in a DevOps environment.

Core Concepts

PromQL - Querying Prometheus

Configuration

Metrics and Data Model

Metric Types:

Counter: A cumulative metric that represents a

single monotonically increasing counter whose value

can only increase or be reset to zero on restart.

Gauge: A metric that represents a single numerical

value that can arbitrarily go up and down.

Histogram: Samples observations (usually things like

request durations or response sizes) and counts

them in configurable buckets. It also provides a sum

of all observed values.

Summary: Similar to a histogram, a summary

samples observations. While it also provides a total

count of observations and a sum of all observed

values, it calculates configurable quantiles over a

sliding time window.

Data Model:

Prometheus fundamentally stores all data as time series:

streams of timestamped values belonging to the same

metric and the same set of labeled dimensions.

Labels:

Key-value pairs that allow Prometheus’s dimensional data

model to shine. Any given combination of labels for the

same metric identify a particular dimensional instantiation

of that metric (e.g. all HTTP requests that used the

method POST to the /api/tracks handler).

Architecture

Prometheus

Server

Scrapes and stores time-series data.

Service

Discovery

Automatically discovers targets to

scrape.

Exporters Expose metrics from third-party

systems (e.g., node_exporter for

system metrics).

Alertmanager Handles alerts sent by Prometheus.

Key Components

Prometheus Server:

The core component responsible for scraping metrics,

storing them, and evaluating alerting rules.

Exporters:

Tools that expose metrics in a Prometheus-readable

format. Examples include node_exporter for system

metrics, mysqld_exporter for MySQL metrics, etc.

Alertmanager:

Handles alerts generated by Prometheus. It can group,

deduplicate, and route alerts to various receivers (e.g.,

email, Slack, PagerDuty).

Basic Queries

http_requests_total - Returns all time series with the

metric name http_requests_total .

http_requests_total{job="prometheus"} - Returns

time series with the metric name http_requests_total

and the label job set to prometheus .

up - Returns the current state of all monitored instances

(1 for up, 0 for down).

Functions

rate(metri

c[duration]

)

Calculates the per-second average rate

of increase of the time series in the range

vector. Use for counters.

irate(metr

ic[duration

])

Calculates the per-second instant rate of

increase of the time series in the range

vector. Useful for graphing volatile

counters.

increase(m

etric[durat

ion])

Calculates the increase in the time series

in the range vector. Good for graphing

total increases.

sum(metric

) by

(label)

Sums the values of all time series with

the same label values.

avg(metric

) by

(label)

Averages the values of all time series

with the same label values.

histogram_

quantile(qu

antile,

metric)

Calculates the given quantile from a

histogram.

Common Queries

CPU Usage:

100 - (avg by (instance)

(irate(node_cpu_seconds_total{mode="idle"}

[5m])) * 100)

Memory Usage:

(1 - (node_memory_MemAvailable_bytes /

node_memory_MemTotal_bytes)) * 100

Disk Usage:

(node_filesystem_size_bytes{mountpoint="/"} -

node_filesystem_free_bytes{mountpoint="/"}) /

node_filesystem_size_bytes{mountpoint="/"} *

100

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/534-prometheus-cheatsheet
http://cheatsheetshero.com/user/all/534-prometheus-cheatsheet
http://cheatsheetshero.com/user/all/534-prometheus-cheatsheet
https://cheatsheetshero.com/

Best Practices

Prometheus Configuration File

(prometheus.yml)

The main configuration file for Prometheus, written in

YAML. It defines scrape configurations, alerting rules, and

other settings.

global: - Global settings such as scrape interval and

evaluation interval.

scrape_configs: - Defines the targets to scrape and how

to scrape them.

rule_files: - Specifies the location of alerting and

recording rules.

Scrape Configuration

A scrape configuration defines how Prometheus scrapes

metrics from a target.

scrape_configs:

 - job_name: 'prometheus'

 static_configs:

 - targets: ['localhost:9090']

job_name: - The name of the job.

static_configs: - Defines a list of targets to scrape.

targets: - A list of hostnames or IP addresses to scrape.

Alerting Rules

Alerting rules define conditions under which alerts should

be fired.

 groups:

 - name: ExampleAlerts

 rules:

 - alert: HighCPUUsage

 expr: 100 - (avg by (instance)

(irate(node_cpu_seconds_total{mode="idle"}

[5m])) * 100) > 80

 for: 5m

 labels:

 severity: critical

 annotations:

 summary: 'High CPU usage detected on

{{ $labels.instance }}'

alert: - The name of the alert.

expr: - The PromQL expression that triggers the alert.

for: - How long the condition must be true before an alert

is fired.

labels: - Labels to add to the alert.

annotations: - Additional information about the alert.

Naming Conventions

Use consistent and descriptive names for metrics and

labels.

Follow the <prefix>_<unit>_<metric> naming

convention (e.g., http_requests_total).

Use labels to add dimensionality to your metrics (e.g.,

method="GET" , status="200").

Alerting Strategies

Define meaningful alerts that provide actionable insights.

Use for clauses to prevent flapping alerts.

Group alerts based on severity and route them to the

appropriate teams.

Monitoring Strategies

Monitor key performance indicators (KPIs) for your

applications and infrastructure.

Use dashboards to visualize metrics and identify trends.

Implement service discovery to automatically monitor

new instances.

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

