
Regular Expressions Cheat Sheet
A concise reference for regular expressions (regex) syntax and usage, covering patterns, metacharacters, quantifiers, and common operations.

Regex Fundamentals

Quantifiers and Grouping

Advanced Regex Features

Common Regex Operations

Basic Patterns

abc Matches the literal sequence abc .

[abc] Matches any single character: a , b , or c .

[^abc

]

Matches any single character except a , b ,

or c .

[a-z] Matches any lowercase letter from a to z .

[0-9] Matches any digit from 0 to 9 .

. Matches any single character (except

newline).

Metacharacters

\

d

Matches any digit (same as [0-9]).

\

D

Matches any non-digit character (same as [^0-

9]).

\

w

Matches any word character (alphanumeric and

underscore, same as [a-zA-Z0-9_]).

\

W

Matches any non-word character (same as [^a-

zA-Z0-9_]).

\

s

Matches any whitespace character (space, tab,

newline).

\

S

Matches any non-whitespace character.

Anchors

^ Matches the beginning of the string.

$ Matches the end of the string.

\

b

Matches a word boundary (the position between a

word character and a non-word character).

\

B

Matches a non-word boundary.

Quantifiers

* Matches the preceding element 0 or more

times.

+ Matches the preceding element 1 or more times.

? Matches the preceding element 0 or 1 time.

{n} Matches the preceding element exactly n times.

{n,

}

Matches the preceding element n or more times.

{n,m

}

Matches the preceding element between n and

m times (inclusive).

Grouping and Capturing

() Groups the enclosed pattern. Captures the

matched text for backreferencing.

(?:pattern) Non-capturing group. Groups the pattern

without capturing the matched text.

| Acts as an ‘or’ operator. Matches either the

pattern before or after the | .

(?

<name>...

)

Named capturing group. Matches ...

and stores it in the group named name .

\1 , \2 ,

…

Backreferences to the captured groups.

\1 refers to the first captured group,

\2 to the second, and so on.

Greedy vs. Lazy Matching

By default, quantifiers are greedy, meaning they match as

much as possible.

Add a ? after a quantifier to make it lazy, matching as

little as possible.

Example:

Given the string <a> and the pattern

<.*> :

Greedy: matches <a>

Lazy: matches <a>

Lookarounds

(?

=patt

ern)

Positive lookahead assertion. Ensures that the

pattern is followed by pattern , but doesn’t

include pattern in the match.

?!pa

tter

n

Negative lookahead assertion. Ensures that the

pattern is not followed by pattern .

(?

<=pat

tern

)

Positive lookbehind assertion. Ensures that the

pattern is preceded by pattern , but doesn’t

include pattern in the match (not supported in

all regex engines).

(?

<!pat

tern

)

Negative lookbehind assertion. Ensures that the

pattern is not preceded by pattern (not

supported in all regex engines).

Flags/Modifiers

i Case-insensitive matching.

g Global matching (find all matches, not just the

first).

m Multiline matching. ^ and $ match the start and

end of each line (as well as the start/end of the

string).

s Dotall. Allows . to match newline characters.

Conditional Regex

(?(condition)then|else) - Matches the then part if

the condition is met, otherwise matches the else

part. The else part can be omitted.

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/531-regular-expressions-cheat-sheet
http://cheatsheetshero.com/user/all/531-regular-expressions-cheat-sheet
http://cheatsheetshero.com/user/all/531-regular-expressions-cheat-sheet
https://cheatsheetshero.com/

Substitution

Replace matches of a pattern with a specified string.

Example (Python):

import re

text = "The quick brown fox"

new_text = re.sub(r"\s+", "-", text)

print(new_text) # Output: The-quick-brown-fox

Splitting

Split a string into a list of substrings based on a regex

delimiter.

Example (JavaScript):

const text = "apple,banana,orange";

const fruits = text.split(/,/);

console.log(fruits); // Output: ['apple',

'banana', 'orange']

Validation

Verify that a string matches a specific format using regex.

Example (Java):

import java.util.regex.Pattern;

String email = "test@example.com";

boolean isValid = Pattern.matches("[a-zA-Z0-

9._%+-]+@[a-zA-Z0-9.-]+\\.[a-zA-Z]{2,}",

email);

System.out.println(isValid); // Output: true

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

