
Design Patterns Cheat Sheet
A quick reference guide to common software design patterns, categorized by their intent: creational, structural, and behavioral. Includes pattern

descriptions, use cases, and implementation notes to help you apply them effectively in your projects.

Creational Patterns

Structural Patterns

Behavioral Patterns

Singleton

Intent: Ensure a class only has one instance

and provide a global point of access

to it.

Use Case: Managing resources like database

connections or configuration

settings.

Implementation

Notes:

Private constructor, static method to

access the instance. Thread safety is

a key consideration.

Example

(Python):
class Singleton:

    _instance = None

    def __new__(cls, *args, 

**kwargs):

        if not 

cls._instance:

            cls._instance = 

super().__new__(cls, *args, 

**kwargs)

        return cls._instance

Factory Method

Intent: Define an interface for creating an

object, but let subclasses decide

which class to instantiate. Promotes

loose coupling.

Use Case: Creating objects of different types

based on runtime configuration or

user input.

Implementation

Notes:

Abstract creator class with a factory

method, concrete creators that

override the method to return

specific product types.

Example (Java):
interface Product {}

class ConcreteProductA 

implements Product {}

interface Creator {

    Product factoryMethod();

}

class ConcreteCreatorA 

implements Creator {

    public Product 

factoryMethod() {

        return new 

ConcreteProductA();

    }

}

Abstract Factory

Intent: Provide an interface for creating

families of related or dependent

objects without specifying their

concrete classes.

Use Case: Supporting multiple look-and-feels

in a GUI or working with different

database systems.

Implementation

Notes:

Abstract factory interface, concrete

factories for each family, abstract

products, and concrete products.

Example

Scenario:

Imagine creating a GUI factory that

can produce Windows or MacOS

specific UI elements (buttons, text

fields, etc.).

Adapter

Intent: Allow incompatible interfaces to work

together. Acts as a wrapper

converting the interface of a class

into another interface clients expect.

Use Case: Integrating legacy systems with new

systems or using third-party libraries

with different interfaces.

Implementation

Notes:

Adapter class implements the target

interface and holds an instance of the

adaptee. Methods in the adapter call

corresponding methods in the

adaptee.

Example: Adapting a Fahrenheit temperature

sensor to a system that expects

Celsius.

Decorator

Intent: Dynamically add responsibilities to an

object without modifying its

structure. Provides a flexible

alternative to subclassing for

extending functionality.

Use Case: Adding logging, caching, or security

features to an object at runtime.

Implementation

Notes:

Decorator class implements the same

interface as the component it

decorates and holds an instance of

the component. It adds extra behavior

before or after calling the

component’s methods.

Example: Adding borders or scrollbars to a GUI

component.

Facade

Intent: Provide a simplified interface to a

complex subsystem. Hides the

complexities of the subsystem from

the client.

Use Case: Simplifying the use of a complex

library or framework.

Implementation

Notes:

Facade class provides simple

methods that delegate to the

underlying subsystem components.

Example: A Compiler  facade that simplifies

the process of compiling code by

hiding the individual steps of lexical

analysis, parsing, and code

generation.

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/527-design-patterns-cheat-sheet
http://cheatsheetshero.com/user/all/527-design-patterns-cheat-sheet
http://cheatsheetshero.com/user/all/527-design-patterns-cheat-sheet
https://cheatsheetshero.com/


Advanced Concepts

Observer

Intent: Define a one-to-many dependency

between objects so that when one

object changes state, all its

dependents are notified and updated

automatically.

Use Case: Implementing event handling

systems or model-view-controller

(MVC) architectures.

Implementation

Notes:

Subject (observable) maintains a list

of observers. When the subject’s

state changes, it notifies all

registered observers.

Example: A stock ticker application where

multiple displays (observers) update

when the stock price (subject)

changes.

Strategy

Intent: Define a family of algorithms,

encapsulate each one, and make

them interchangeable. Strategy lets

the algorithm vary independently

from clients that use it.

Use Case: Implementing different sorting

algorithms or payment processing

methods.

Implementation

Notes:

Strategy interface defines the

algorithm. Concrete strategy classes

implement specific algorithms.

Context holds a reference to a

strategy object.

Example: Allowing a user to choose between

different compression algorithms

(e.g., ZIP, GZIP) when saving a file.

Template Method

Intent: Define the skeleton of an algorithm in

an operation, deferring some steps to

subclasses. Template Method lets

subclasses redefine certain steps of

an algorithm without changing the

algorithm’s structure.

Use Case: Implementing a build process where

some steps are common and others

are specific to different types of

projects.

Implementation

Notes:

Abstract class defines the template

method, which calls abstract and

concrete methods. Concrete classes

implement the abstract methods to

provide specific behavior.

Example: Implementing a report generation

process where the steps of loading

data, formatting data, and outputting

data are defined, but the specific

formatting and output methods are

different for different report types.

Anti-Patterns

These are patterns that are commonly used but are

ineffective and often lead to negative consequences.

Examples:

God Object: A class that knows too much or does

too much.

Spaghetti Code: Code that is difficult to read and

trace.

Copy-Paste Programming: Duplicating code instead

of using proper abstraction.

GRASP Principles

Information

Expert:

Assign responsibility to the class that

has the information needed to fulfill it.

Creator: Assign responsibility of object

creation to the class that contains or

closely uses the created objects, or

that has the initializing data.

Low Coupling: Design classes with minimal

dependencies on other classes.

High Cohesion: Keep related responsibilities grouped

together in the same class.

Polymorphism: Use polymorphism to handle variation

based on type.

Protected

Variations:

Protect elements from the variations

by wrapping them with an interface.

Pure

Fabrication:

Assign a high cohesion set of

responsibilities to an artificial class

that does not represent a problem

domain concept.

Controller: Assign the responsibility of receiving

or handling a system event to a class

that is not a UI class.

SOLID Principles

Single

Responsibility

Principle (SRP):

A class should have only one

reason to change.

Open/Closed

Principle (OCP):

Software entities should be open

for extension, but closed for

modification.

Liskov Substitution

Principle (LSP):

Subtypes must be substitutable

for their base types.

Interface

Segregation

Principle (ISP):

Clients should not be forced to

depend upon interfaces that they

do not use.

Dependency

Inversion Principle

(DIP):

Depend upon abstractions, not

concretions. High-level modules

should not depend on low-level

modules.

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

