
CircleCI Cheat Sheet
A comprehensive cheat sheet for CircleCI, covering configuration, commands, and best practices to streamline your CI/CD workflows.

Configuration Basics

Common Steps

`.circleci/config.yml` Structure

The config.yml file is the heart of your CircleCI

configuration. It defines workflows, jobs, and

steps.

Key Components:

version : Specifies the CircleCI

configuration version.

orbs : Reusable packages of configuration.

jobs : Collection of steps.

workflows : Define how jobs are executed.

Example:

version: 2.1

orbs:

 heroku: circleci/heroku@1.2.6

jobs:

 build:

 docker:

 - image: cimg/node:16.13

 steps:

 - checkout

 - run: npm install

workflows:

 build_and_deploy:

 jobs:

 - build

Common Configuration Keys

vers

ion

Specifies the version of the CircleCI

configuration language. Currently 2.1

is recommended.

job

s

Defines individual tasks to be executed.

Jobs contain steps.

work

flow

s

Orchestrates the execution of jobs,

defining dependencies and sequencing.

step

s

A list of commands or pre-defined

actions executed within a job.

dock

er

Specifies the Docker image to use for the

job’s execution environment.

chec

kout

A special step that clones your repository

into the workspace.

Workflow Configuration

Workflows define how jobs are executed and

orchestrated. Key features include:

Sequencing: Define the order in which jobs

run.

Dependencies: Specify that a job should only

run after another job completes successfully.

Filters: Control when a job runs based on

branches, tags, or other conditions.

Example:

workflows:

 build_and_deploy:

 jobs:

 - build

 - deploy: # job name

 requires: # specifies the

dependent jobs

 - build

 filters:

 branches:

 only: main

Built-in Steps

checkou

t

Clones the repository into the

workspace. Should be the first step

in most jobs.

run Executes shell commands. The most

versatile step.

save_ca

che

Saves files or directories to the

cache for reuse in subsequent jobs.

restore

_cache

Restores files or directories from the

cache.

store_a

rtifact

s

Uploads artifacts (e.g., test reports,

binaries) to CircleCI for storage and

retrieval.

persist

_to_work

space

Saves data to a workspace that can

be accessed by subsequent jobs in

the workflow.

attach_

workspac

e

Attaches the workspace to the

current job.

Using the `run` Step

The run step executes shell commands.

Common Attributes:

name : A descriptive name for the step.

command : The shell command to execute.

shell : The shell to use (e.g., bash , sh).

working_directory : The directory in which

to execute the command.

Example:

steps:

 - run:

 name: Install Dependencies

 command: npm install

 working_directory: ./frontend

Page 1 of 3 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/524-circleci-cheat-sheet
http://cheatsheetshero.com/user/all/524-circleci-cheat-sheet
http://cheatsheetshero.com/user/all/524-circleci-cheat-sheet
https://cheatsheetshero.com/

Orbs and Integrations

Caching

Caching is crucial for speeding up builds. Use

save_cache and restore_cache to cache

dependencies and other frequently used files.

Best Practices:

Use a unique cache key based on

dependency file hashes (e.g., package-

lock.json).

Cache dependencies and build artifacts.

Invalidate the cache when dependencies

change.

Example:

steps:

 - restore_cache:

 keys:

 - v1-dependencies-{{ checksum

"package-lock.json" }}

 - v1-dependencies

 - run:

 name: Install Dependencies

 command: npm install

 - save_cache:

 paths:

 - node_modules

 key: v1-dependencies-{{ checksum

"package-lock.json" }}

Using Orbs

Orbs are reusable packages of CircleCI

configuration. They simplify configuration and

enable integration with third-party services.

Benefits:

Reduced configuration duplication.

Easy integration with popular tools and

services.

Community-maintained and verified orbs.

Example: Using the Heroku Orb

version: 2.1

orbs:

 heroku: circleci/heroku@1.2.6

workflows:

 deploy:

 jobs:

 - heroku/deploy:

 app-name: my-app

 requires:

 - build

Common Orbs

circleci/herok

u

For deploying to Heroku.

circleci/aws-

s3

For interacting with AWS S3

buckets.

circleci/slac

k

For sending notifications to

Slack channels.

circleci/docke

r-compose

For running Docker

Compose commands.

fastly/fastly For interacting with the

Fastly CDN.

browser-

tools/selenium-

orb

For UI/browser testing

Integrating with Services

CircleCI integrates with numerous services

through orbs and custom configurations.

Examples:

AWS: Deploy to EC2, Lambda, or S3 using

the AWS CLI or orbs.

Google Cloud: Deploy to Google Cloud

Platform using gcloud commands.

Slack: Send build status notifications to

Slack channels.

Docker Hub: Build and push Docker images

to Docker Hub.

NPM/Maven/etc: Publish packages to

package registries

Page 2 of 3 https://cheatsheetshero.com

https://cheatsheetshero.com/

Advanced Features

Environment Variables

Environment variables are used to store sensitive

information (e.g., API keys, passwords) and

configure builds.

Setting Environment Variables:

In the CircleCI web interface (Project

Settings -> Environment Variables).

Dynamically in the config.yml file using

workflow parameters.

Accessing Environment Variables:

Use the $VAR_NAME syntax in run

commands.

Example:

steps:

 - run:

 name: Deploy to Production

 command: |

 ./deploy.sh $PRODUCTION_API_KEY

Workflow Parameters

para

meter

s

Define parameters at the workflow level

to customize job execution. These

parameters can be passed to jobs.

type

s

Specify the type of parameter (e.g.,

string , boolean , integer , enum).

defa

ult

Set a default value for the parameter.

desc

ripti

on

Add descriptive text to the parameter, to

help users understand the expected

value

Using SSH

Connect to remote servers using SSH. Useful for

deploying applications or running remote

commands. The add_ssh_keys step is used to

add SSH keys to the environment.

Generating SSH Keys:

Generate a new SSH key pair using ssh-

keygen .

Add the private key to CircleCI as an

environment variable.

Add the public key to the remote server’s

authorized_keys file.

Example:

steps:

 - add_ssh_keys:

 fingerprints:

 - "your_ssh_key_fingerprint"

 - run:

 name: Deploy via SSH

 command: ssh user@host

'./deploy.sh'

Page 3 of 3 https://cheatsheetshero.com

https://cheatsheetshero.com/

