CHEAT DynamoDB Cheatsheet

SH EETS A quick reference guide to Amazon DynamoDB, covering key concepts, data types, operations, and best practices for efficient database
management.

Core Concepts

Basic Definitions Data Types
DynamoDB: A fully managed, serverless, key-value and Scalar Types String, Number, Binary, Boolean, Null
document database offered by Amazon Web Services .
Document List, Map
(AWS).
Types
Table: A collection of items, similar to a table in a . .
Set Types String Set, Number Set, Binary Set
relational database.
Note DynamoDB is schemaless, meaning each

Item: A collection of attributes, which is analogous to a . . .
)) item in a table can have different
row in a relational database.

attributes.
Attribute: A key-value pair that describes a property of an
item. Provisioned vs. On-Demand Capacity
Primary Key: A unique identifier for each item in a table, . .

Provisioned You specify the number of read and
composed of either a partition key or a partition key and Capacity write capacity units (RCUs/WCUs) your
sort key. application requires. Good for
Partition Key (Hash Key): Used to distribute data across predictable workloads.
partitions for scalability. On-Demand DynamoDB automatically scales
Sort Key (Range Key): Used to sort items within a Capacity capacity based on your application’s
partition. traffic patterns. Good for unpredictable
Secondary Index: A data structure that allows you to workloads.
query the table using attributes other than the primary
key.

Basic Operations
CRUD Operations Query and Scan
PutItem : Creates a new item or replaces an existing Query Retrieves items based on primary key
item. attributes. Requires the partition key and

optionally a condition on the sort key.

Example (AWS CLI): More efficient than scan .

aws dynamodb put-item --table-name MyTable -- . . .
Y P Y Scan Retrieves all items in a table (or a subset
item '{"id": {"N": "1"}, "name": {"S":) ' o
* (o ¢ 3 ¢ based on filter expressions). Less efficient
"Example"}}' .

ple”}} than Query , especially for large tables, as

. . . . it reads every item.
GetItem : Retrieves an item by its primary key.

Example
Example (AWS CLI): Que aws dynamodb query --table-name
ry MyTable --key-condition-
aws dynamodb get-item --table-name MyTable -- (AWS CLI) expression 'id = :id' --
key "{"id": {"N": MatR expression-attribute-values '{
miidtr {UNT: "1M})
UpdateItem : Modifies an existing item.
Example
Example (AWS CLI): aws dynamodb scan --table-name
Scan (AWS
X MyTable
aws dynamodb update-item --table-name MyTable CLI)
--key '"{"id": {"N": "1"}}' --update-expression
'SET #n = :val' --expression-attribute-names Batch Operations
'{"#n": "name"}' --expression-attribute-values
"{ ":val": {"s": "Updated Example"} }' Batch Performs multiple PutItem and DeleteItem

writeI operations in a single request, improving

DeleteItem : Deletes anitem by its primary key. = efficiency for bulk data operations.

Example (AWS CLI): Batch Retrieves multiple items from one or more
GetIte tablesin a single request, reducing the number
of API calls.

aws dynamodb delete-item --table-name MyTable
—-key '{"id": {"N": "1"}}' m

Indexes

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/514-dynamodb-cheatsheet
http://cheatsheetshero.com/user/all/514-dynamodb-cheatsheet
http://cheatsheetshero.com/user/all/514-dynamodb-cheatsheet
https://cheatsheetshero.com/

Global Secondary Index (GSI)

Local Secondary Index (LSI)

Choosing an Index

An index that allows queries on attributes other than the
primary key. Can have a different partition and sort key
than the base table.

Key characteristics:

« Can be created or deleted at any time.
* Queries can span all items in the table.

« Has its own provisioned throughput capacity.

Best Practices

Data Modeling

An index that has the same partition key as the base table
but a different sort key. Must be created when the table is

created.
Key characteristics:

« Shares the provisioned throughput capacity of the
base table.

e Limited to 5 LSIs per table.

« Offers strong consistency reads.

Performance Optimization

Use GSI .

when:

You need to query on attributes other

than the primary key.

» Your query patterns are diverse and
don't align with the base table’s primary
key.

» You need to project only a subset of
attributes to improve query performance
and reduce costs.

Use LSI « You need to query using an alternate
when: sort key but the same partition key as
the base table.
« You require strongly consistent reads.
Security

Understand Access Patterns: Before designing your table,
carefully analyze your application’s read and write access
patterns to optimize your schema for performance and
cost.

Avoid Hot Partitions: Ensure even distribution of data
across partitions by choosing appropriate partition keys.
Avoid keys with low cardinality or that lead to uneven

distribution of writes.

Denormalization: Consider denormalizing your data by
embedding related data within a single item to reduce the

need for multiple queries.

Page 2 of 2

Use Projections: When querying indexes, project only the
attributes you need to reduce the amount of data read

and improve performance.

Batch Operations: Use BatchGetItem and

BatchwriteItem to perform multiple read and write
operations in a single request, reducing latency and
improving throughput.

Parallel Scans: For large tables, use parallel scans to divide
the scan operation into multiple segments, improving the
overall scan time. (Use with caution as it can consume
significant RCUs).

IAM Roles: Use IAM roles to grant fine-grained
permissions to your application to access DynamoDB
tables, following the principle of least privilege.

Encryption: Enable encryption at rest and in transit to
protect sensitive data. DynamoDB supports encryption
using AWS KMS.

https://cheatsheetshero.com

https://cheatsheetshero.com/

