
DynamoDB Cheatsheet
A quick reference guide to Amazon DynamoDB, covering key concepts, data types, operations, and best practices for efficient database

management.

Core Concepts

Basic Operations

Indexes

Basic Definitions

DynamoDB: A fully managed, serverless, key-value and

document database offered by Amazon Web Services

(AWS).

Table: A collection of items, similar to a table in a

relational database.

Item: A collection of attributes, which is analogous to a

row in a relational database.

Attribute: A key-value pair that describes a property of an

item.

Primary Key: A unique identifier for each item in a table,

composed of either a partition key or a partition key and

sort key.

Partition Key (Hash Key): Used to distribute data across

partitions for scalability.

Sort Key (Range Key): Used to sort items within a

partition.

Secondary Index: A data structure that allows you to

query the table using attributes other than the primary

key.

Data Types

Scalar Types String, Number, Binary, Boolean, Null

Document

Types

List, Map

Set Types String Set, Number Set, Binary Set

Note DynamoDB is schemaless, meaning each

item in a table can have different

attributes.

Provisioned vs. On-Demand Capacity

Provisioned

Capacity

You specify the number of read and

write capacity units (RCUs/WCUs) your

application requires. Good for

predictable workloads.

On-Demand

Capacity

DynamoDB automatically scales

capacity based on your application’s

traffic patterns. Good for unpredictable

workloads.

CRUD Operations

PutItem : Creates a new item or replaces an existing

item.

Example (AWS CLI):

aws dynamodb put-item --table-name MyTable --

item '{"id": {"N": "1"}, "name": {"S":

"Example"}}'

GetItem : Retrieves an item by its primary key.

Example (AWS CLI):

aws dynamodb get-item --table-name MyTable --

key '{"id": {"N": "1"}}'

UpdateItem : Modifies an existing item.

Example (AWS CLI):

aws dynamodb update-item --table-name MyTable

--key '{"id": {"N": "1"}}' --update-expression

'SET #n = :val' --expression-attribute-names

'{"#n": "name"}' --expression-attribute-values

'{ ":val": {"S": "Updated Example"} }'

DeleteItem : Deletes an item by its primary key.

Example (AWS CLI):

aws dynamodb delete-item --table-name MyTable

--key '{"id": {"N": "1"}}'

Query and Scan

Query Retrieves items based on primary key

attributes. Requires the partition key and

optionally a condition on the sort key.

More efficient than Scan .

Scan Retrieves all items in a table (or a subset

based on filter expressions). Less efficient

than Query , especially for large tables, as

it reads every item.

Example

Query

(AWS CLI)

aws dynamodb query --table-name

MyTable --key-condition-

expression 'id = :id' --

expression-attribute-values '{

":id": {"N": "1"} }'

Example

Scan (AWS

CLI)

aws dynamodb scan --table-name

MyTable

Batch Operations

Batch

WriteI

tem

Performs multiple PutItem and DeleteItem

operations in a single request, improving

efficiency for bulk data operations.

Batch

GetIte

m

Retrieves multiple items from one or more

tables in a single request, reducing the number

of API calls.

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/514-dynamodb-cheatsheet
http://cheatsheetshero.com/user/all/514-dynamodb-cheatsheet
http://cheatsheetshero.com/user/all/514-dynamodb-cheatsheet
https://cheatsheetshero.com/

Best Practices

Global Secondary Index (GSI)

An index that allows queries on attributes other than the

primary key. Can have a different partition and sort key

than the base table.

Key characteristics:

Can be created or deleted at any time.

Queries can span all items in the table.

Has its own provisioned throughput capacity.

Local Secondary Index (LSI)

An index that has the same partition key as the base table

but a different sort key. Must be created when the table is

created.

Key characteristics:

Shares the provisioned throughput capacity of the

base table.

Limited to 5 LSIs per table.

Offers strong consistency reads.

Choosing an Index

Use GSI

when:

You need to query on attributes other

than the primary key.

Your query patterns are diverse and

don’t align with the base table’s primary

key.

You need to project only a subset of

attributes to improve query performance

and reduce costs.

Use LSI

when:

You need to query using an alternate

sort key but the same partition key as

the base table.

You require strongly consistent reads.

Data Modeling

Understand Access Patterns: Before designing your table,

carefully analyze your application’s read and write access

patterns to optimize your schema for performance and

cost.

Avoid Hot Partitions: Ensure even distribution of data

across partitions by choosing appropriate partition keys.

Avoid keys with low cardinality or that lead to uneven

distribution of writes.

Denormalization: Consider denormalizing your data by

embedding related data within a single item to reduce the

need for multiple queries.

Performance Optimization

Use Projections: When querying indexes, project only the

attributes you need to reduce the amount of data read

and improve performance.

Batch Operations: Use BatchGetItem and

BatchWriteItem to perform multiple read and write

operations in a single request, reducing latency and

improving throughput.

Parallel Scans: For large tables, use parallel scans to divide

the scan operation into multiple segments, improving the

overall scan time. (Use with caution as it can consume

significant RCUs).

Security

IAM Roles: Use IAM roles to grant fine-grained

permissions to your application to access DynamoDB

tables, following the principle of least privilege.

Encryption: Enable encryption at rest and in transit to

protect sensitive data. DynamoDB supports encryption

using AWS KMS.

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

