
Hanami Framework Cheatsheet
A quick reference guide to the Hanami framework, covering essential commands, configurations, and concepts for building robust web applications.

Project Setup & Core Concepts

Routing & Controllers (Actions)

Project Initialization

Creating a new Hanami project:

This command generates a basic Hanami project structure.

hanami new my_project

cd my_project

Starting the development server:

Launches the Hanami development server, usually on localhost:2300 .

bundle exec hanami dev

Project Structure Overview:

apps/ : Contains individual Hanami applications (e.g., web).

config/ : Configuration files for the entire project.

db/ : Database-related files (migrations, schema).

lib/ : Core application logic and entities.

Application Architecture

Slice A modular component encapsulating specific functionality

within an application.

Actions Handle incoming HTTP requests and orchestrate the

response. Similar to controllers in other frameworks.

Views Responsible for rendering the response. They prepare data

for templates.

Repositories Interact with the database. Provide an abstraction layer for

data access.

Entities Represent domain objects. They encapsulate data and

business logic.

Defining Routes

Basic Route Definition:

Inside config/routes.rb :

This maps a GET request to / to the index action of the

HomeController .

slice :main, at: "/" do

 get "/", to: "home#index"

end

Route Shorthands:

get "/articles", to: "articles.index"

post "/articles", to: "articles.create"

put "/articles/:id", to: "articles.update"

delete "/articles/:id", to: "articles.destroy"

Resources:

Automatically generates routes for common CRUD operations.

resources :articles

Creating Actions

Action Class Structure:

in apps/web/controllers/home/index.rb

module Web::Controllers::Home

 class Index

 include Web::Action

 def call(params)

 # params contains request parameters

 # Perform logic here

 # Set response data

 @message = "Hello, Hanami!"

 end

 end

end

Exposing Data to Views:

Instance variables set in the call method are automatically available in the

corresponding view.

Handling Parameters:

Request parameters are accessible through the params object.

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/509-hanami-framework-cheatsheet
http://cheatsheetshero.com/user/all/509-hanami-framework-cheatsheet
http://cheatsheetshero.com/user/all/509-hanami-framework-cheatsheet
https://cheatsheetshero.com/

Views & Templates

Models & Repositories

View Components

Basic View Structure:

in apps/web/views/home/index.rb

module Web::Views::Home

 class Index

 include Web::View

 def message

 raw(context[:message])

 end

 end

end

Templates:

Located in apps/web/templates/home/index.html.erb (or other template

engines).

Access data exposed by the view using instance variables or the context .

Partials:

Create reusable template snippets.

<%= partial 'shared/footer' %>

Template Engines

ERB Embedded Ruby, the default template engine.

Slim A fast and lightweight template engine with a clean syntax.

Haml Another popular template engine with a concise syntax.

Defining Entities

Entity Structure:

Entities represent domain objects. They encapsulate data and business logic.

in lib/my_project/entities/article.rb

class Article < Hanami::Entity

end

Attributes:

Attributes are defined through database schema.

Example: :id , :title , :content

Repositories

Repository Structure:

in lib/my_project/repositories/article_repository.rb

class ArticleRepository < Hanami::Repository

end

Common Operations:

ArticleRepository.new.find(id) : Finds an entity by ID.

ArticleRepository.new.create(data) : Creates a new entity.

ArticleRepository.new.update(id, data) : Updates an existing

entity.

ArticleRepository.new.delete(id) : Deletes an entity.

Querying:

ArticleRepository.new.where(title: 'Example').all

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

