
Cucumber Cheat Sheet
A comprehensive guide to Cucumber, covering Gherkin syntax, step definitions, configuration, and best practices for writing effective and

maintainable automated tests.

Gherkin Syntax Essentials

Step Definitions

Configuration and Hooks

Advanced Cucumber Techniques

Feature and Scenario Structure

Feature: Describes a high-level feature of the

application.

Scenario: A specific example of how the feature

should behave.

Scenario Outline: A template for multiple scenarios

with different data.

Examples: Table of data used with Scenario Outline.

Example:

Feature: User Authentication

 Scenario: Successful login

 Given User is on the login page

 When User enters valid credentials

 Then User should be logged in

Keywords

Given Sets up the initial context of the scenario.

When Describes an event or action performed by

the user.

Then Specifies the expected outcome or result.

And ,

But

Used to chain multiple Given , When , or

Then steps for readability.

Backgr

ound

A set of steps that run before each scenario

in a feature.

Data Tables and Doc Strings

Data Tables: Used to pass structured data to a step

definition.

Doc Strings: Used to pass larger blocks of text to a

step definition.

Data Table Example:

Given the following users exist:

 | username | password |

 | john | secret |

 | jane | password |

Doc String Example:

Given the following message:

 """

 This is a long message

 that spans multiple lines.

 """

Basic Step Definition Structure

Step definitions link Gherkin steps to code that executes

those steps.

Given('User is on the login page') do

 # Code to navigate to the login page

end

Step definitions typically use regular expressions to

match the Gherkin step text.

Regular Expression Usage

.* Matches any character (except newline) zero

or more times.

(\d+

)

Matches one or more digits and captures the

value.

([^"]

*)

Matches any character except a double quote,

zero or more times, and captures the value.

^(.*)$ Matches the entire line and captures it.

Step Definition with Arguments

Given('User enters {string} as username') do

|username|

 # Code to enter the username

 fill_in('username', with: username)

end

Given('the product name is {word}') do

|product_name|

 # ...

end

Cucumber Configuration

Cucumber is typically configured using a cucumber.yml

file or command-line options.

Key configuration options include:

paths : Specifies the location of feature files.

requires : Specifies files to load before running

tests (e.g., step definitions, support files).

profiles : Defines different configurations for

different environments (e.g., test, development).

Example cucumber.yml :

default: --format pretty

test: --format progress --tags @test

Hooks

Befor

e

Runs before each scenario or a tagged scenario.

Afte

r

Runs after each scenario or a tagged scenario.

Aroun

d

Wraps around each scenario, allowing you to

perform actions before and after the scenario.

After

Step

Runs after each step.

Hook Examples

Before('@database') do

 # Code to set up the database

end

After do |scenario|

 # Code to take a screenshot if the scenario

fails

 if scenario.failed?

 save_screenshot('screenshot.png')

 end

end

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/502-cucumber-cheat-sheet
http://cheatsheetshero.com/user/all/502-cucumber-cheat-sheet
http://cheatsheetshero.com/user/all/502-cucumber-cheat-sheet
https://cheatsheetshero.com/

Tagged Hooks and Scenarios

Tags are used to organize and filter scenarios and hooks.

Scenarios can be tagged directly in the feature file:

Hooks can be tagged to run only for specific scenarios:

@smoke

Scenario: Successful login

 ...

Before('@smoke') do

 # Code to run before smoke tests

end

Parallel Execution

Cucumber can be configured to run scenarios in parallel,

significantly reducing test execution time.

This often involves using a gem like cucumber-parallel

or parallel_tests .

Configuration typically involves specifying the number of

parallel processes to use.

Best Practices

Write clear and concise Gherkin features: Features

should be easy to understand by both technical and

non-technical stakeholders.

Keep step definitions focused: Step definitions

should perform a single, well-defined action.

Avoid duplication: Use hooks and helper methods to

avoid repeating code in step definitions.

Use data tables and doc strings effectively: These

features can help make your scenarios more readable

and maintainable.

Run tests frequently: Integrate Cucumber tests into

your CI/CD pipeline to catch issues early.

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

