CHEAT HERO SHEETS HERO

A comprehensive cheat sheet for Snort, covering installation, configuration, rule writing, and usage for network intrusion detection and prevention.

Installation and Basic Configuration

Installation

Ubuntu/Debian:

sudo apt-get update sudo apt-get install snort

CentOS/RHEL:

sudo yum install snort

Download from Snort.org:

Download the latest version from the official Snort website and follow the installation instructions provided.

Basic Configuration File

The main configuration file is snort.conf. It is located in

/etc/snort/. Key configurations include defining network variables, setting up preprocessors, and specifying rule files.

Important variables to configure:

- **var HOME_NET** : The internal network(s) to protect.
- var EXTERNAL_NET : The external network(s), typically !HOME_NET .

Running Snort

Basic command	sudo snort -dev -i eth0 -c /etc/snort/snort.conf
	 -dev : Display application layer data. -i eth0 : Listen on interface eth0. -c : Specify the configuration file.
Test Configuration	<pre>sudo snort -T -c /etc/snort/snort.conf -T: Test the configuration file for errors.</pre>
Run in NIDS mode	<pre>sudo snort -D -q -u snort -g snort -c /etc/snort/snort.conf -i eth0 -D: Run as a daemong: Quiet mode (no console output)</pre>
	-u and -g : Specify user and group.

Snort Rule Structure

Rule Header

The rule header defines the action, protocol, source, and destination information.
Syntax: action protocol src_ip src_port -> dst_ip dst_port (options)
Example: alert tcp any any -> 192.168.1.0/24 80
(content:"GET"; msg:"HTTP GET detected";)

Rule Actions

ale rt	Generates an alert using the selected method.
10 g	Logs the packet.
pas s	Ignores the packet.
dro p	Drops the packet and logs it (inline mode only).
rej ect	Drops the packet and sends a TCP reset (for TCP) or ICMP port unreachable (for UDP) (inline mode only).
sdr op	Drops the packet but does not log it (inline mode only).

Rule Options

Rule options provide detailed inspection and action		
parameters within the rule. They are enclosed in		
parentheses ().		
Key options include msg, content, flow, depth,		
offset, distance, within, flags, ttl, and		
classtype .		

Common Rule Options

Content Matching

Flow Control

<pre>content: "string" ;</pre>	Matches the specified string in the packet payload. Example: content:"/etc/passwd";	f d, f
nocase	Makes the content match case-insensitive. Example: content:"GET"; nocase;	Me
depth:va lue;	Specifies the maximum number of bytes to search within the payload. Example: content:" <script></script>	

flow:establishe Checks for established connections d, to_server; from client to server. flow:stateless Ignores the flow state. ; Metadata and Classifications

<pre>msg:"message" ;</pre>	Specifies the message to display when the rule is triggered.
<pre>classtype:troj an-activity;</pre>	Categorizes the type of attack or activity.
sid:1000001;	Specifies the Snort ID of the rule. Should be unique.
rev:1;	Specifies the revision number of the rule.

Advanced Rule Examples

Detecting Shellcode

alert tcp any any -> \$HOME_NET 80
(content:"|90 90 90 90|"; msg:"Possible
shellcode detected"; sid:1000002; rev:1;)

This rule detects the presence of No Operation (NOP) sleds, which are commonly used in shellcode.

Detecting SQL Injection

alert tcp any any -> \$HOME_NET 80
(content:"select "; nocase; msg:"Possible SQL
Injection"; sid:1000003; rev:1;)

This rule detects SQL injection attempts by looking for common SQL keywords in HTTP traffic.

Detecting Specific User-Agent

alert tcp any any -> \$HOME_NET 80 (http_uri; content:"User-Agent: BadBot"; msg:"BadBot User-Agent Detected"; sid:1000004; rev:1;)

This rule detects a specific user agent string in HTTP requests.

File Integrity Monitoring

Snort can be configured with tools like **ossec** for enhanced file integrity monitoring and log analysis.

This typically involves integrating Snort alerts with OSSEC to provide real-time monitoring and alerting of file changes.