
Command-Line & Shell Cheatsheet
A comprehensive cheat sheet for navigating and utilizing command-line interfaces and shell environments effectively. This guide covers essential

commands, scripting techniques, and environment configurations for improved productivity.

Basic Navigation & File Management

Piping, Redirection, and Permissions

Shell Scripting Basics

Navigation Commands

pwd Print working directory (shows the current

directory).

cd

<director

y>

Change directory to <directory> . Use

cd .. to go up one level.

ls List directory contents (files and

subdirectories).

ls -l List directory contents in long format

(permissions, size, etc.).

ls -a List all files, including hidden files (starting

with .).

ls -t List files sorted by modification time

(newest first).

File & Directory Manipulation

mkdir

<directory>

Create a new directory named

<directory> .

touch

<file>

Create an empty file named <file> or

update the timestamp if the file exists.

cp <source>

<destination

>

Copy the file or directory <source> to

<destination> .

mv <source>

<destination

>

Move or rename the file or directory

<source> to <destination> .

rm <file> Remove (delete) the file <file> .

Warning: This is permanent!

rm -r

<directory>

Remove the directory <directory>

and its contents recursively. Use with

caution!

File Viewing

cat

<file>

Display the entire contents of <file> on the

terminal.

less

<file>

View the contents of <file> one page at a

time, allowing navigation.

head

<file>

Display the first few lines of <file> (default

is 10 lines).

tail

<file>

Display the last few lines of <file> (default

is 10 lines).

tail -

f

<file>

Display the last few lines of <file> and

continue to display new lines as they are

added (follow mode).

wc

<file>

Word count - Display number of lines, words,

and bytes in file.

Piping and Redirection

| (pipe) Pass the output of one command as

input to another command.

Example: ls -l | grep 'txt' (list

files and filter for those containing ‘txt’)

> (redirect

output)

Redirect the output of a command to a

file, overwriting the file if it exists.

Example: ls > files.txt (save the

list of files to files.txt)

>> (append

output)

Append the output of a command to a

file without overwriting it.

Example: echo 'New line' >>

files.txt

2> (redirect

error)

Redirect standard error to a file.

Example: command 2> error.log

&> (redirect

both)

Redirect standard output and standard

error to a file.

Example: command &> output.log

< (redirect

input)

Redirect input from a file to a command.

Example: wc < files.txt (count

words in files.txt)

File Permissions

chmod

<permissions

> <file>

Change the permissions of a file or

directory. Permissions can be specified

numerically (e.g., 755) or symbolically

(e.g., u+rwx,g+rx,o+rx).

chown

<user>:

<group>

<file>

Change the owner and group of a file or

directory.

ls -l

output

The output shows permissions in the

format -rwxr-xr-- . The first character

indicates the file type (e.g., - for

regular file, d for directory). The next

three characters are the owner’s

permissions, followed by the group’s

permissions, and then others’

permissions. r = read, w = write, x

= execute.

Numeric

Permissions

4 = read, 2 = write, 1 = execute.

Add these values to set permissions. For

example, 7 (4+2+1) means read, write,

and execute.

Symbolic

Permissions

u = user/owner, g = group, o =

others, a = all. + adds a permission,

- removes a permission, = sets a

permission.

Example: chmod u+x <file> (add

execute permission for the owner)

umask Sets default permissions for newly

created files and directories. Common

value is 022 .

Process Management

ps Display a snapshot of the current

processes.

ps aux Display a comprehensive list of all

processes.

top Display a dynamic real-time view of

running processes.

kill

<PID>

Terminate the process with the specified

process ID (PID).

Example: kill 1234 (kills process with

PID 1234)

kill -9

<PID>

Forcefully terminate the process (use as a

last resort).

Example: kill -9 1234

bg Place a stopped job in the background.

fg Move a background job to the foreground.

jobs List active jobs.

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/498-command-line-shell-cheatsheet
http://cheatsheetshero.com/user/all/498-command-line-shell-cheatsheet
http://cheatsheetshero.com/user/all/498-command-line-shell-cheatsheet
https://cheatsheetshero.com/

Advanced Shell Techniques

Script Structure

A shell script is a text file containing a sequence of

commands.

The first line should specify the interpreter using a

shebang (#!):

Comments start with # .

Make the script executable using chmod +x

<script_name> .

#!/bin/bash

Variables

Defining a

variable

variable_name="value" (no spaces

around =)`

Accessing a

variable

$variable_name or

${variable_name}

Environment

variables

Accessed like regular variables.

Examples: $HOME , $PATH , $USER

Read-only

variables

readonly variable_name

Unsetting a

variable

unset variable_name

Control Structures

If statement:

For loop:

While loop:

Until loop:

if [condition]; then

 commands

elif [condition]; then

 commands

else

 commands

fi

for variable in word1 word2 ... wordN; do

 commands

done

while [condition]; do

 commands

done

until [condition]; do

 commands

done

Functions

Defining a

function

or

function_name() {

 commands

}

function function_name {

 commands

}

Calling a

function

function_name

Passing

arguments

Inside the function, access arguments

using $1 , $2 , etc.

Returning a

value

Use return value (value must be an

integer between 0 and 255). Use echo

to return other types of data, but capture

the output.

Command Substitution

$(comm

and)

Execute command and substitute the output

into the current command line.

Example: echo "Today is $(date +%Y-%m-

%d)"

`comma

nd`

(Deprecated) - An older form of command

substitution (using backticks).

Regular Expressions (grep)

grep is a powerful tool for searching text using regular

expressions.

grep 'pattern' <file> : Search for lines

containing pattern in file .

grep -i 'pattern' <file> : Case-insensitive

search.

grep -r 'pattern' <directory> : Recursive

search in directory .

grep -v 'pattern' <file> : Invert the match

(show lines that do not contain pattern).

grep -E 'pattern' <file> : Use extended regular

expressions.

sed (Stream Editor)

sed is a powerful stream editor for transforming text.

sed 's/old/new/g' <file> : Replace all

occurrences of old with new in file .

sed -i 's/old/new/g' <file> : Replace in-place

(modifies the file directly).

sed '/pattern/d' <file> : Delete lines containing

pattern .

sed '2d' <file> : Delete the second line.

sed '$d' <file> : Delete the last line.

awk (Pattern Scanning and Processing

Language)

awk is a powerful programming language for text

processing.

awk '{print $1}' <file> : Print the first field of

each line in file (fields are separated by spaces

by default).

awk -F',' '{print $2}' <file> : Print the

second field of each line, using , as the field

separator.

awk '/pattern/ {print $0}' <file> : Print lines

containing pattern .

awk 'BEGIN {print "Start"} {print $1} END

{print "End"}' <file> : Execute code before and

after processing the file.

find

find . -

name

"*.txt"

Find all files with the .txt extension in

the current directory and its

subdirectories.

find / -

type d -name

"config"

Find all directories named config in

the entire file system.

find . -

size +1M

Find all files larger than 1MB in the

current directory.

find . -

mtime -7

Find files modified in the last 7 days.

find . -

user

<username>

Find all files owned by <username> .

find . -

exec ls -l

{} \;

Execute the ls -l command on each

file found.

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

