
Coding Interview Tips Cheatsheet
A concise guide offering effective strategies and techniques for acing coding interviews, covering preparation, problem-solving, communication,

and follow-up.

Preparation Strategies

During the Interview

Communication Skills

Post-Interview

Fundamentals Review

Data Structures: Master arrays, linked lists, trees, graphs,

hash tables, stacks, and queues. Understand their

properties, time complexities, and use cases.

Algorithms: Grasp sorting (e.g., quicksort, mergesort),

searching (e.g., binary search), and graph algorithms (e.g.,

Dijkstra’s, BFS, DFS). Understand their trade-offs.

Time Complexity (Big O): Learn to analyze the efficiency

of algorithms. Focus on O(1), O(log n), O(n), O(n log n),

O(n n). Practice determining complexity for

common operations.

2), and O(2

Space Complexity: Understand how much memory your

algorithms use. Be mindful of auxiliary space used in

addition to input data.

Practice Platforms

LeetCode Extensive problem set, active

community, and interview simulations.

HackerRank Diverse challenges, tracks progress,

and provides company-specific

preparation kits.

GeeksforGeeks Comprehensive articles, explanations,

and coding problems.

Interview Cake Focuses on understanding underlying

principles, not just memorizing

solutions.

Mock Interviews

Schedule mock interviews with peers or online services

(e.g., Pramp, interviewing.io). Simulate real interview

pressure to identify areas for improvement.

Ask for detailed feedback on your problem-solving

approach, coding style, and communication skills.

Record yourself to analyze your body language and verbal

communication.

Understanding the Problem

Clarify Requirements: Ask clarifying questions to fully

understand the problem scope, constraints, and edge

cases. Don’t assume anything!

Example Inputs/Outputs: Work through a few examples

to solidify your understanding and identify potential

complexities.

Test Cases: Think about different types of test cases:

basic, edge, large-scale, and negative. This demonstrates

thoroughness.

Problem Solving Approach

Think Out Loud: Explain your thought process as you

explore potential solutions. The interviewer wants to see

how you think.

Break it Down: Decompose the problem into smaller,

manageable subproblems. This makes the overall task less

daunting.

Consider Trade-offs: Analyze the time and space

complexity of different approaches and discuss the trade-

offs with the interviewer.

Optimal Solution: Aim for the most efficient solution, but

don’t get stuck optimizing prematurely. A working

solution is better than no solution.

Coding

Write Clean Code: Use meaningful variable names, proper

indentation, and comments to improve readability.

Modularize: Break your code into functions to improve

organization and reusability.

Handle Edge Cases: Explicitly address potential edge

cases in your code to prevent errors.

Don’t Panic: If you get stuck, take a deep breath and

revisit your approach. Ask the interviewer for a hint if

necessary.

Verbal Communication

Be Clear and Concise: Articulate your thoughts clearly

and avoid rambling. Use precise language to explain your

ideas.

Active Listening: Pay attention to the interviewer’s

questions and instructions. Ask follow-up questions to

ensure understanding.

Explain Trade-offs: Clearly articulate the reasoning

behind your design choices, highlighting the benefits and

drawbacks of each option.

Non-Verbal Communication

Maintain Eye Contact: Show engagement and confidence

by making eye contact with the interviewer.

Body Language: Sit upright, avoid fidgeting, and use hand

gestures to emphasize your points.

Enthusiasm: Express genuine interest in the problem and

the company. Show that you are excited about the

opportunity.

Asking Questions

Prepare Questions: Have a few thoughtful questions

prepared about the company, the team, or the role. This

demonstrates your interest and initiative.

Focus on Culture and Growth: Ask questions that reveal

insights into the company culture, opportunities for

professional development, and the team’s goals.

Avoid Generic Questions: Steer clear of questions easily

answered by a quick search on the company website.

Show you’ve done your research.

Follow-Up

Thank-You Note: Send a personalized thank-you note

within 24 hours, reiterating your interest and highlighting

key takeaways from the interview.

Be Specific: Reference specific topics discussed during

the interview to demonstrate your engagement and

attentiveness.

Review and Reflection

Analyze Performance: Review your performance in the

interview. What went well? What could you have done

better? Identify areas for improvement.

Seek Feedback: Reach out to mock interviewers or

mentors for additional feedback on your performance.

Document Learning: Keep a log of the questions you

encountered, the solutions you developed, and the

lessons you learned. This will help you prepare for future

interviews.

Handling Rejection

Don’t Take it Personally: Rejection is a common part of

the job search process. Don’t let it discourage you.

Request Feedback: If possible, ask for specific feedback

on why you weren’t selected. This can provide valuable

insights for future improvement.

Stay Positive: Maintain a positive attitude and continue to

refine your skills and strategies. Persistence is key.

Page 1 of 1 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/486-coding-interview-tips-cheatsheet
http://cheatsheetshero.com/user/all/486-coding-interview-tips-cheatsheet
http://cheatsheetshero.com/user/all/486-coding-interview-tips-cheatsheet
https://leetcode.com/
https://www.hackerrank.com/
https://www.geeksforgeeks.org/
https://www.interviewcake.com/
https://cheatsheetshero.com/

