
Microsoft SQL Server Cheatsheet
A comprehensive cheat sheet for Microsoft SQL Server, covering essential commands, syntax, and functions for database management and

querying.

Basic SQL Commands

Querying Data

Advanced SQL Features

Data Definition Language (DDL)

CREATE DATABASE Creates a new database.

CREATE DATABASE MyDatabase;

ALTER DATABASE Modifies an existing database.

ALTER DATABASE MyDatabase MODIFY NAME = MyNewDatabase;

DROP DATABASE Deletes a database.

DROP DATABASE MyDatabase;

CREATE TABLE Creates a new table.

CREATE TABLE Employees (

 ID INT PRIMARY KEY,

 Name VARCHAR(255)

);

ALTER TABLE Modifies an existing table.

ALTER TABLE Employees ADD Salary DECIMAL(10, 2);

DROP TABLE Deletes a table.

DROP TABLE Employees;

Data Manipulation Language (DML)

SELECT Retrieves data from a database.

SELECT * FROM Employees;

INSERT Inserts new data into a table.

INSERT INTO Employees (ID, Name) VALUES (1, 'John Doe');

UPDATE Updates existing data in a table.

UPDATE Employees SET Salary = 50000 WHERE ID = 1;

DELETE Deletes data from a table.

DELETE FROM Employees WHERE ID = 1;

MERGE Performs insert, update, or delete operations based on conditions.

MERGE INTO TargetTable AS Target

USING SourceTable AS Source

ON Target.ID = Source.ID

WHEN MATCHED THEN

 UPDATE SET Target.Name = Source.Name

WHEN NOT MATCHED THEN

 INSERT (ID, Name) VALUES (Source.ID, Source.Name);

Filtering and Sorting

WHERE Filters rows based on a condition.

SELECT * FROM Employees WHERE Salary > 60000;

AND / OR Combines multiple conditions.

SELECT * FROM Employees WHERE Salary > 50000 AND Department =

'IT';

ORDER

BY

Sorts the result set.

SELECT * FROM Employees ORDER BY Name ASC;

TOP Returns the top N rows.

SELECT TOP 10 * FROM Employees ORDER BY Salary DESC;

BETWEEN Filters rows within a range.

SELECT * FROM Employees WHERE Salary BETWEEN 50000 AND 70000;

IN Filters rows based on a set of values.

SELECT * FROM Employees WHERE Department IN ('IT', 'HR');

Joins

INNER JOIN Returns rows with matching values in both tables.

SELECT * FROM Employees INNER JOIN Departments ON

Employees.DepartmentID = Departments.ID;

LEFT JOIN Returns all rows from the left table and matching rows from the right

table.

SELECT * FROM Employees LEFT JOIN Departments ON

Employees.DepartmentID = Departments.ID;

RIGHT JOIN Returns all rows from the right table and matching rows from the left

table.

SELECT * FROM Employees RIGHT JOIN Departments ON

Employees.DepartmentID = Departments.ID;

FULL OUTER

JOIN

Returns all rows when there is a match in either the left or right table.

SELECT * FROM Employees FULL OUTER JOIN Departments ON

Employees.DepartmentID = Departments.ID;

CROSS JOIN Returns the Cartesian product of the tables.

SELECT * FROM Employees CROSS JOIN Departments;

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/485-microsoft-sql-server-cheatsheet
http://cheatsheetshero.com/user/all/485-microsoft-sql-server-cheatsheet
http://cheatsheetshero.com/user/all/485-microsoft-sql-server-cheatsheet
https://cheatsheetshero.com/

Transactions and Stored Procedures

Aggregate Functions

COUNT Counts the number of rows.

SELECT COUNT(*) FROM Employees;

SUM Calculates the sum of values.

SELECT SUM(Salary) FROM Employees;

AVG Calculates the average of values.

SELECT AVG(Salary) FROM Employees;

MIN Finds the minimum value.

SELECT MIN(Salary) FROM Employees;

MAX Finds the maximum value.

SELECT MAX(Salary) FROM Employees;

Grouping and Having

GROUP

BY

Groups rows with the same values.

SELECT Department, COUNT(*) FROM

Employees GROUP BY Department;

HAVING Filters groups based on a condition.

SELECT Department, COUNT(*) FROM

Employees GROUP BY Department

HAVING COUNT(*) > 10;

ROLLUP Generates multiple grouping sets, including

subtotals and grand totals.

SELECT Department, YEAR(HireDate),

COUNT(*)

FROM Employees

GROUP BY ROLLUP (Department,

YEAR(HireDate));

CUBE Generates all possible grouping sets for the

specified columns.

SELECT Department, YEAR(HireDate),

COUNT(*)

FROM Employees

GROUP BY CUBE (Department,

YEAR(HireDate));

Subqueries

Subquery in

WHERE

clause

Using a subquery to filter results.

SELECT * FROM Employees WHERE

DepartmentID IN (SELECT ID FROM

Departments WHERE Location =

'New York');

Subquery in

SELECT

clause

Using a subquery to return a value.

SELECT Name, (SELECT

MAX(Salary) FROM Employees) AS

MaxSalary FROM Employees;

Correlated

Subquery

A subquery that references a column

from the outer query.

SELECT Name FROM Employees e1

WHERE Salary > (SELECT

AVG(Salary) FROM Employees e2

WHERE e1.DepartmentID =

e2.DepartmentID);

Transactions

BEGIN TRANSACTION Starts a new transaction.

BEGIN TRANSACTION;

COMMIT TRANSACTION Saves all changes made during the transaction.

COMMIT TRANSACTION;

ROLLBACK TRANSACTION Reverts all changes made during the transaction.

ROLLBACK TRANSACTION;

SAVE TRANSACTION Sets a savepoint within a transaction.

SAVE TRANSACTION SavePoint1;

Stored Procedures

CREATE

PROCEDURE

Creates a new stored procedure.

CREATE PROCEDURE GetEmployeesByDepartment

(@Department VARCHAR(255))

AS

BEGIN

 SELECT * FROM Employees WHERE Department =

@Department;

END;

EXECUTE

PROCEDURE

Executes a stored procedure.

EXEC GetEmployeesByDepartment 'IT';

ALTER PROCEDURE Modifies an existing stored procedure.

ALTER PROCEDURE GetEmployeesByDepartment (@Department

VARCHAR(255))

AS

BEGIN

 SELECT ID, Name FROM Employees WHERE Department =

@Department;

END;

DROP PROCEDURE Deletes a stored procedure.

DROP PROCEDURE GetEmployeesByDepartment;

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

