
Advanced Regular Expressions Cheat Sheet
A concise guide to advanced regular expression patterns and techniques, including lookarounds, backreferences, and conditional matching, designed

to help you master complex text manipulation.

Lookarounds

Backreferences

Positive Lookahead

(?:patte

rn)

Matches a group without capturing it.

Useful when you need to group parts of a

regex but don’t need to refer back to them.

Example:

Matches a URL but doesn’t capture the

protocol.

(?:https?|ftp)://.*

(?

=pattern

)

Asserts that the regex matches the

pattern that follows, but doesn’t include

the pattern in the match.

Example:

Matches a word followed by ’ Inc.’, without

including ’ Inc.’ in the matched text.

\w+(?=\sInc\.)

X(?=Y) Find “X” only if followed by “Y”.

Example

Matches ‘foo’ only if it’s followed by ‘bar’,

but ‘bar’ is not part of the match.

foo(?=bar)

Use cases Validating password strength, parsing

structured data, and conditional

replacements.

Real-

world

example

Extract the version number from ‘app-

1.2.3.zip’ using app-(?=\d+

(?:\.\d+)*\.zip) . This will only match

‘app-’ if it’s followed by a version number

pattern and ‘.zip’.

Negative Lookahead

X(?!Y) Find “X” only if not followed by “Y”.

Example

Matches ‘foo’ only if it’s NOT followed by

‘bar’.

foo(?!bar)

(?

<!pattern

)

Asserts that the regex matches if the

pattern does not precede the current

position. The pattern is not included in

the match.

Example:

Matches ‘%word’ only if it is not preceded

by a digit.

(?<!\d)%\w+

Use cases Filtering log files, validating data formats,

and advanced search functionalities.

Real-world

example

Find all words that are not preceded by a

number using (?<!\d)\b\w+\b . This helps

to exclude words that are part of a

numbered list.

(?

<!pattern

)X

Asserts that the regex matches if the

pattern does not precede the current

position. The pattern is not included in

the match.

Example:

Matches a one or more digits if not

preceded by a capital letter

(?<![A-Z])\d+

Positive Lookbehind

(?

<=pattern

)

Asserts that the regex matches the

pattern that precedes, but doesn’t

include the pattern in the match.

Example:

Matches a number preceded by ‘USD’,

without including ‘USD’ in the matched

number.

(?<=USD)\d+\.?\d*

(?<=X)Y Find “Y” only if preceded by “X”.

Example

Matches ‘foo’ only if it’s preceded by ‘bar’,

but ‘bar’ is not part of the match.

(?<=bar)foo

Use cases Extracting data from specific contexts,

validating formatted input, and data

sanitization.

Real-world

example

Extract file sizes (numbers) only when they

are indicated in kilobytes (KB) using (?

<=KB)\d+ . This targets only the file sizes

specified in KB.

Note Not supported in all regex engines.

Negative Lookbehind

(?

<!pattern

)X

Asserts that the regex matches if the

pattern does not precede the current

position. The pattern is not included in

the match.

Example:

Matches ‘%word’ only if it is not preceded

by a digit.

(?<!\d)%\w+

(?<!X)Y Find “Y” only if not preceded by “X”.

Example

Matches ‘foo’ only if it’s NOT preceded by

‘bar’.

(?<!bar)foo

Use cases Filtering data based on context, excluding

unwanted patterns, and refining search

results.

Real-world

example

Find function names that are not part of a

class method definition using (?

<!\.)\b\w+\b . This helps to identify

standalone functions.

Note Not supported in all regex engines.

Page 1 of 3 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/480-advanced-regular-expressions-cheat-sheet
http://cheatsheetshero.com/user/all/480-advanced-regular-expressions-cheat-sheet
http://cheatsheetshero.com/user/all/480-advanced-regular-expressions-cheat-sheet
https://cheatsheetshero.com/

Conditional Matching

Recursion

Basic Backreference

\1 , \2 ,

etc.

Refers to the text matched by the 1st, 2nd,

etc. capturing group.

Example:

Matches a repeated word, like ‘the the’.

(\w+)\s\1

Use cases Finding duplicate words, validating

symmetrical patterns, and complex text

replacements.

Example Find duplicated words in a text:

(\b\w+)\s+\1 . This will match ‘word

word’ and is case-sensitive.

Common

mistake

Forgetting that backreferences refer to the

exact matched text, not the pattern.

Real-world

example

Correct HTML tag pairing using

<(.*?)>.*?</\1> . This ensures that the

closing tag matches the opening tag (e.g.,

<h1>...</h1>).

Note Backreferences can significantly increase

the complexity (and processing time) of

regex matching.

Named Capture Groups

(?

<name>pattern)

(PCRE/Python)

Defines a named capture group.

Example:

Matches a date and names the

groups ‘year’, ‘month’, and ‘day’.

(?<year>\d{4})-(?

<month>\d{2})-(?<day>\d{2})

(?'name'pattern

) (.NET)

Alternative syntax for defining

named capture groups in .NET.

\k<name>

(PCRE/Python)

Refers to a named capture group.

Example:

Matches repeated words using the

named group ‘word’.

(?<word>\w+)\s+\k<word>

Use cases Parsing complex data structures,

extracting specific parts of a string,

and making regexes more readable.

Real-world

example

Extract specific parts of a log entry

like timestamp, log level, and

message using named groups for

better clarity and maintainability.

Note Named groups improve readability

but might not be supported in all

regex engines.

Backreference in Replacement

$1 , $2 ,

etc. (Most

engines)

Refers to captured groups in the

replacement string.

Example:

Swaps the first and last word separated

by a comma and space.

Find: (\w+),(\s)(\w+)

Replace: $3,$2$1

\1 , \2 ,

etc. (Some

engines)

Alternative syntax for backreferences in

replacement strings, especially in

languages like Python.

Use cases Reformatting data, swapping fields, and

complex string manipulations.

Example Reformat phone numbers from ‘123-456-

7890’ to ‘(123) 456-7890’ using (\d{3})-

(\d{3})-(\d{4}) as the find pattern and

($1) $2-$3 as the replace pattern.

Note Ensure that the backreference number

matches the intended capture group to

avoid unexpected results.

Real-world

example

Swap first name and last name in a CSV

file, where names are separated by a

comma, using backreferences in the

replacement string.

If-Then-Else Conditionals

?(?

(condition)then|

else)

Matches either the then pattern if the condition is true, or the

else pattern if the condition is false.

Condition syntax (?(1)then|else) - Condition based on whether group 1 matched.

Example

Matches email addresses, optionally enclosed in angle brackets.

(<)?(\w+@\w+(?:\.\w+)+)(?(1)>)

Use cases Handling optional elements, validating complex data formats, and

adapting matching based on context.

Real-world

example

Parse data entries where some fields are optional but depend on

the presence of others, such as address fields in a contact

database.

Note Not supported in all regex engines, and syntax may vary.

If-Then Conditionals

?(?

(condition)then

)

Matches the then pattern only if the condition is true.

Condition syntax (?(name)then) - Condition based on whether named group ‘name’

matched.

Example

Matches a number, optionally enclosed in parentheses, but only if

both parentheses are present.

(\()?\d+(?(1)\))

Use cases Validating paired elements, handling different formats, and ensuring

data consistency.

Real-world

example

Process log entries that may or may not include a timestamp, but

require specific handling if the timestamp is present.

Note Like If-Then-Else, If-Then conditionals have limited support across

regex engines.

Recursive Patterns

(?R) or (?0) Recurses the entire regular expression.

Example:

Matches nested parentheses.

\(([^()]|(?R))*\)

(?n) Recurses the nth subpattern.

Use cases Matching nested structures, parsing markup languages, and validating complex syntax.

Note Recursion is powerful but can lead to performance issues or stack overflow errors with deeply nested structures. Not supported in all regex engines.

Page 2 of 3 https://cheatsheetshero.com

https://cheatsheetshero.com/

Example Match nested HTML tags like <div><div>...</div></div> using recursion to ensure proper nesting.

Real-world example Parse nested JSON or XML structures, ensuring that all opening tags have corresponding closing tags.

Page 3 of 3 https://cheatsheetshero.com

https://cheatsheetshero.com/

