
Testing and Debugging Cheat Sheet
A comprehensive cheat sheet covering essential testing and debugging techniques, tools, and strategies for software development. This guide

provides a quick reference to help developers write robust and reliable code.

Testing Fundamentals

Debugging Techniques

Assertion and Error Handling

Testing Types

Unit Testing Tests individual components or

functions in isolation.

Integration

Testing

Tests the interaction between different

components.

System

Testing

Tests the entire system to ensure it

meets requirements.

Acceptance

Testing

Tests the system from the user’s

perspective to validate it meets their

needs.

Regression

Testing

Retests previously tested components

after changes to ensure no new issues

were introduced.

Performance

Testing

Tests the system’s responsiveness,

stability, and scalability under various

load conditions.

Test-Driven Development (TDD)

1. Write a failing test before writing any code.

2. Write the minimum amount of code to pass the test.

3. Refactor the code to improve its structure and

maintainability.

TDD promotes writing clean, testable code and ensures

that all code is covered by tests.

Test Automation

Automated tests can be run repeatedly and consistently,

saving time and reducing the risk of human error.

Popular tools include Selenium, JUnit, pytest, and

Cypress.

Benefits include faster feedback, improved test coverage,

and reduced testing costs.

Debugging Strategies

Print

Statements

Insert print statements to display

variable values and track the program’s

execution flow.

print(f'Value of x: {x}')

Debuggers Use debuggers to step through code,

inspect variables, and set breakpoints.

Examples: pdb (Python), gdb

(C/C++), Chrome DevTools (JavaScript).

Logging Implement logging to record events,

errors, and warnings for later analysis.

Example (Python):

import logging

logging.basicConfig(level=loggi

ng.DEBUG)

logging.debug('This is a debug

message')

Code

Reviews

Have peers review your code to identify

potential bugs and improve code quality.

Rubber Duck

Debugging

Explain the code to an inanimate object

(e.g., a rubber duck) to help clarify your

thinking and identify errors.

Divide and

Conquer

Isolate the problem by systematically

eliminating sections of code until the

bug is found.

Common Debugging Tools

IDEs (Integrated Development Environments):

Provide built-in debugging tools, code completion,

and other features.

Debuggers: Standalone tools for stepping through

code and inspecting variables.

Linters: Static analysis tools that identify potential

code quality issues and bugs.

Analyzing Stack Traces

A stack trace shows the sequence of function calls that

led to an error. Use it to identify the source of the error

and understand the program’s execution path.

Key information includes function names, line numbers,

and file names.

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/469-testing-and-debugging-cheat-sheet
http://cheatsheetshero.com/user/all/469-testing-and-debugging-cheat-sheet
http://cheatsheetshero.com/user/all/469-testing-and-debugging-cheat-sheet
https://cheatsheetshero.com/

Advanced Testing Topics

Assertions

Purpose Verify assumptions in code during

development. If an assertion fails, it

indicates a bug.

Example

(Python)
def divide(a, b):

 assert b != 0, 'Cannot divide

by zero'

 return a / b

Usage Use assertions to check preconditions,

postconditions, and invariants.

Exception Handling

Purpose Handle unexpected errors gracefully to

prevent program crashes. Use try-

except blocks to catch and handle

exceptions.

Example

(Python)
try:

 result = 10 / 0

except ZeroDivisionError as e:

 print(f'Error: {e}')

Best

Practices

Catch specific exceptions, log errors, and

provide informative error messages.

Error Reporting

Implement robust error reporting mechanisms to capture

and log errors in production environments. This helps in

identifying and fixing issues quickly.

Tools like Sentry, Rollbar, and Bugsnag can be used to

track and manage errors.

Mocking

Definition Creating simulated objects or functions to

isolate and test specific parts of the code.

This allows you to test in isolation without

dependencies.

Example

(Python)
from unittest.mock import Mock

Create a mock object

mock_obj = Mock()

Set a return value for a method

mock_obj.some_method.return_value

= 42

Use the mock object in tests

result = mock_obj.some_method()

assert result == 42

Fuzzing

Definition A testing technique that involves feeding

invalid, unexpected, or random data to a

program to identify vulnerabilities and bugs.

Tools AFL (American Fuzzy Lop), libFuzzer, and

Peach Fuzzer.

Static Analysis

Definition Analyzing source code without executing it

to identify potential errors, security

vulnerabilities, and code quality issues.

Tools SonarQube, FindBugs, and ESLint.

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

