
Sorting Algorithms Cheat Sheet
A concise cheat sheet covering common sorting algorithms, their time complexities, and pseudocode for quick reference during coding interviews

and algorithm analysis.

Basic Sorting Algorithms

Divide and Conquer Sorting

Advanced Sorting Algorithms

Bubble Sort

Description: Repeatedly steps through the list,

compares adjacent elements and swaps

them if they are in the wrong order.

Time

Complexity:

Worst/Avg: O(n^2), Best: O(n) (when

nearly sorted)

Space

Complexity:

O(1)

Pseudocode:
for i = 0 to n-1:

 for j = 0 to n-i-1:

 if arr[j] > arr[j+1]:

 swap(arr[j], arr[j+1])

Use Cases: Rarely used in practice due to its

inefficiency on large datasets. Good for

small, nearly sorted datasets.

Selection Sort

Description: Finds the minimum element in each

iteration and places it at the beginning.

Time

Complexity:

O(n^2) (always)

Space

Complexity:

O(1)

Pseudocode:
for i = 0 to n-1:

 min_idx = i

 for j = i+1 to n:

 if arr[j] < arr[min_idx]:

 min_idx = j

 swap(arr[i], arr[min_idx])

Use Cases: Simple to implement but generally

inefficient for large datasets. Performs

well compared to bubble sort.

Insertion Sort

Description: Builds the final sorted array one item at a

time. It is much less efficient on large

lists than more advanced algorithms

such as quicksort, heapsort, or merge

sort.

Time

Complexity:

Worst/Avg: O(n^2), Best: O(n) (when

nearly sorted)

Space

Complexity:

O(1)

Pseudocode:
for i = 1 to n-1:

 key = arr[i]

 j = i-1

 while j >= 0 and arr[j] >

key:

 arr[j+1] = arr[j]

 j = j-1

 arr[j+1] = key

Use Cases: Efficient for small datasets or nearly

sorted data. Often used as a subroutine

in more complex sorting algorithms.

Merge Sort

Description: Divides the array into halves, recursively sorts each half, and then

merges the sorted halves.

Time

Complexity:

O(n log n) (always)

Space

Complexity:

O(n)

Pseudocode:
mergeSort(arr, l, r):

 if l < r:

 m = (l + r) / 2

 mergeSort(arr, l, m)

 mergeSort(arr, m+1, r)

 merge(arr, l, m, r)

Use Cases: Guaranteed O(n log n) performance, suitable for large datasets. Used

in external sorting.

Quick Sort

Description: Picks an element as a pivot and partitions the array around the pivot.

Average case is very efficient.

Time

Complexity:

Worst: O(n^2), Avg: O(n log n), Best: O(n log n)

Space

Complexity:

O(log n) average, O(n) worst (due to recursion stack)

Pseudocode:
quickSort(arr, low, high):

 if low < high:

 pi = partition(arr, low, high)

 quickSort(arr, low, pi - 1)

 quickSort(arr, pi + 1, high)

Use Cases: Generally the fastest sorting algorithm in practice. Sensitive to pivot

selection.

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/463-sorting-algorithms-cheat-sheet
http://cheatsheetshero.com/user/all/463-sorting-algorithms-cheat-sheet
http://cheatsheetshero.com/user/all/463-sorting-algorithms-cheat-sheet
https://cheatsheetshero.com/

Sorting Algorithm Summary

Heap Sort

Description: Uses a binary heap data structure to sort the array. In-place

algorithm.

Time

Complexity:

O(n log n) (always)

Space

Complexity:

O(1)

Pseudocode:
heapSort(arr):

 buildMaxHeap(arr)

 for i = n-1 to 0:

 swap(arr[0], arr[i])

 heapify(arr, 0, i)

Use Cases: Guaranteed O(n log n) performance, in-place, but generally slower

than quicksort in practice.

Radix Sort

Description: Sorts integers by processing individual digits. Non-comparison based

sorting.

Time

Complexity:

O(nk) where k is the number of digits in the largest number.

Space

Complexity:

O(n+k)

Pseudocode:
radixSort(arr, n):

 for digit = 0 to k:

 countSort(arr, n, digit)

Use Cases: Efficient for integers when the range of digits is known. Can be faster

than comparison sorts under certain conditions.

Time and Space Complexity Comparison

Algorithm Best Case Average Case Worst Case Space Complexity

Bubble Sort O(n) O(n^2) O(n^2) O(1)

Selection Sort O(n^2) O(n^2) O(n^2) O(1)

Insertion Sort O(n) O(n^2) O(n^2) O(1)

Merge Sort O(n log n) O(n log n) O(n log n) O(n)

Quick Sort O(n log n) O(n log n) O(n^2) O(log n) avg, O(n) worst

Heap Sort O(n log n) O(n log n) O(n log n) O(1)

Radix Sort O(nk) O(nk) O(nk) O(n+k)

Choosing the Right Sorting Algorithm

Small Datasets: Insertion sort is often the fastest.

Large Datasets: Merge sort or quicksort are generally preferred.

Nearly Sorted Data: Insertion sort or bubble sort (with optimization) can be very

efficient.

Memory Constraints: Heap sort is an in-place algorithm.

Specific Data Types: Radix sort can be very efficient for integers.

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

