
JSON Formatting Cheatsheet
A comprehensive guide to JSON formatting, covering syntax, data types, best practices, and tools for creating readable and maintainable JSON

documents.

JSON Basics & Syntax

Formatting Best Practices

Advanced Formatting & Tools

Core Concepts

JSON (JavaScript Object Notation): A lightweight data-interchange format that is easy

for humans to read and write and easy for machines to parse and generate.

Based on a subset of JavaScript syntax.

Uses key-value pairs and ordered lists.

Platform independent and widely supported.

Data Types: JSON supports several primitive data types:

string : Unicode string, enclosed in double quotes.

number : Integer or floating-point number.

boolean : true or false .

null : Represents an empty value.

object : A collection of key-value pairs, enclosed in curly braces {} .

array : An ordered list of values, enclosed in square brackets [] .

Syntax Rules

Key-Value

Pairs

Keys must be strings enclosed in double quotes. Values can be any of the

supported JSON data types.

Example:

{"name": "John Doe", "age": 30}

Objects A collection of key-value pairs, enclosed in curly braces {} .

Example:

{ "city": "New York", "country": "USA" }

Arrays An ordered list of values, enclosed in square brackets [] .

Example:

["apple", "banana", "cherry"]

Nesting JSON objects and arrays can be nested to represent complex data

structures.

Example:

{

 "name": "Jane Doe",

 "address": {

 "street": "123 Main St",

 "city": "Anytown"

 }

}

Indentation

Use consistent indentation to improve readability. A

common practice is to use 2 or 4 spaces for each level of

indentation. Avoid using tabs as they can be interpreted

differently by different editors.

Example (2 spaces):

Example (4 spaces):

{

 "name": "John",

 "age": 30

}

{

 "name": "John",

 "age": 30

}

Line Breaks

Insert line breaks after each comma to separate key-value

pairs in objects and elements in arrays. This makes the

structure easier to follow.

Example:

{

 "name": "John",

 "age": 30,

 "city": "New York"

}

Consistent Quotes

Always use double quotes for strings. JSON specification

requires keys to be enclosed in double quotes as well.

Valid:

{"name": "John"}

Invalid:

{'name': 'John'} (single quotes are not valid)

Avoiding Trailing Commas

Do not include trailing commas after the last key-value

pair in an object or the last element in an array. Trailing

commas are invalid JSON and can cause parsing errors.

Invalid:

Valid:

{

 "name": "John",

 "age": 30,

}

{

 "name": "John",

 "age": 30

}

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/430-json-formatting-cheatsheet
http://cheatsheetshero.com/user/all/430-json-formatting-cheatsheet
http://cheatsheetshero.com/user/all/430-json-formatting-cheatsheet
https://cheatsheetshero.com/

Common Issues & Solutions

JSON Validators

Use JSON validators to ensure your JSON documents are

well-formed and valid. Validators can catch syntax errors,

incorrect data types, and other issues.

Online Validators:

JSONLint (jsonlint.com)

JSONFormatter (jsonformatter.org)

Command-line Tools:

jq (a lightweight and flexible command-line JSON

processor)

python -m json.tool (Python’s built-in JSON

validator)

JSON Formatters/Beautifiers

Use formatters to automatically indent and add line

breaks to your JSON documents, making them more

readable.

Online Formatters:

JSONFormatter.org

FreeFormatter.com

Text Editor Plugins:

VS Code: Prettier, JSON Tools

Sublime Text: Pretty JSON

Atom: atom-beautify

Schema Validation

Use JSON Schema to define the structure and data types

of your JSON documents. This helps ensure data

consistency and can be used to validate JSON

documents programmatically.

Key Concepts:

$schema : Specifies the JSON Schema version.

type : Defines the data type (e.g., string ,

number , object , array).

properties : Defines the properties of an object

and their types.

required : Specifies which properties are

mandatory.

enum : Restricts a value to a predefined set of

values.

Example:

{

 "$schema": "http://json-schema.org/draft-

07/schema#",

 "type": "object",

 "properties": {

 "name": { "type": "string" },

 "age": { "type": "integer", "minimum": 0 }

 },

 "required": ["name", "age"]

}

Encoding Issues

Ensure your JSON documents are encoded in UTF-8 to

support a wide range of characters. Incorrect encoding

can lead to parsing errors or data corruption.

Solution:

Save your JSON files in UTF-8 encoding.

Specify the encoding in the Content-Type header

when sending JSON data over HTTP

(application/json; charset=utf-8).

Escaping Special Characters

Special characters in strings, such as double quotes,

backslashes, and control characters, must be escaped

using backslashes.

Common Escape Sequences:

\" : Double quote

\\ : Backslash

\/ : Forward slash

\b : Backspace

\f : Form feed

\n : Newline

\r : Carriage return

\t : Tab

\uXXXX : Unicode character (e.g., \u00A9 for the

copyright symbol)

Large Numbers

JavaScript’s Number type can only accurately represent

integers up to a certain limit

(Number.MAX_SAFE_INTEGER). For larger numbers,

consider using strings to avoid precision issues.

Example:

{

 "id": "12345678901234567890" // Store large

numbers as strings

}

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

