CHEAT
SHEETS

Data Types & Declarations

SystemVerilog Cheatsheet

A concise reference for SystemVerilog syntax and constructs, covering data types, operators, procedural statements, and verification features.

Basic Data Types Arrays User-Defined Types
log Two-state type, can be O or 1. Preferred for Fixed-size logic [7:0] data [0:15]; //16 typede typedef logic [3:0] nibble_t; nibble_t
ic synthesizable designs. array elements, each 8 bits wide. f my_nibble;
re Historically used for sequential logic outputs; Dynamic array int dyn_array[]; dyn_array = struc typedef struct {
g now largely replaced by logic . new[array_size]; t Togic valid;
bi Two-state, unsigned data type. Associative bit [63:0] assoc_array [string]; logic [7:0] data;
E array // Index with string. } packet_t;
packet_t my_packet;
in 32-bit signed integer.
t
enum typedef enum {IDLE, READ, WRITE}
rea 64-bit floating-point number. state_t;
1 state_t current_state;
tim 64-bit unsigned integer representing simulation
e time.
Operators & Expressions
Arithmetic Operators Bitwise Operators Shift Operators
+),C-).) Addition, subtraction, multiplication, &, |, Bitwise AND, OR, XOR, NOT. Operates on <<) (>3, Logical left shift, logical right shift,
/. % division, modulo. AL~ individual bits. <<< , >>> arithmetic left shift, arithmetic right shift.
** Exponentiation. ~& , ~|, Bitwise NAND, NOR, XNOR.

Logical Operators

& , || , Logical AND, OR, NOT. Operates on

I boolean values (1 or 0).

Procedural Statements

Sequential Blocks

~A

Reduction Operators

&, Reduction AND, OR, XOR. Operates on all bits
. of a vector to produce a single-bit result.

A

Conditional Statements

Comparison Operators

Equality, inequality, case equality, case

inequality. Case equality considers X and

Z
>), (<) Greater than, less than, greater than or
>2), (<= equal to, less than or equal to.

Loop Statements

always_ Combinational logic block. Re-evaluates
comb whenever any of its inputs change.

always_ Sequential logic block. Used for describing
ff flip-flops and registers.

always_ Latch inferrence. Avoid using latches in
latch synchronous design.

i7=cllse if (condition) begin
// statements
end else begin
// statements
end
case

case (expression)
valuel: statement;
value2: statement;
default: statement;

endcase

o for (int i = 0; i < 10; i++) begin
// statements
end
while . s .
while (condition) begin
// statements
end
repeat

repeat (8) begin
// statements

end

Task and Function

tas Can consume simulation time. Can have input,

Kk output, and inout arguments.

func Cannot consume simulation time. Returns a

tion single value. Can only have input arguments.
Verification Features
Assertions Constrained Random Verification Coverage
assert Checks if a property holds true. Can be rand Specifies that a variable should be Functional Measure of how well the design’s
property used for functional coverage. randomized. Coverage functionality has been exercised during
. i verification. Check covergroup and
cover Collects coverage information based on constrai Defines constraints that the random values
. . coverpoint
property property evaluation. nt must satisfy.
Page 1 of 1 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/425-systemverilog-cheatsheet
http://cheatsheetshero.com/user/all/425-systemverilog-cheatsheet
http://cheatsheetshero.com/user/all/425-systemverilog-cheatsheet
https://cheatsheetshero.com/

