
SystemVerilog Cheatsheet
A concise reference for SystemVerilog syntax and constructs, covering data types, operators, procedural statements, and verification features.

Data Types & Declarations

Operators & Expressions

Procedural Statements

Verification Features

Basic Data Types

log

ic

Two-state type, can be 0 or 1. Preferred for

synthesizable designs.

re

g

Historically used for sequential logic outputs;

now largely replaced by logic .

bi

t

Two-state, unsigned data type.

in

t

32-bit signed integer.

rea

l

64-bit floating-point number.

tim

e

64-bit unsigned integer representing simulation

time.

Arrays

Fixed-size

array

logic [7:0] data [0:15]; // 16

elements, each 8 bits wide.

Dynamic array int dyn_array[]; dyn_array =

new[array_size];

Associative

array

bit [63:0] assoc_array [string];

// Index with string.

User-Defined Types

typede

f

typedef logic [3:0] nibble_t; nibble_t

my_nibble;

struc

t
typedef struct {

 logic valid;

 logic [7:0] data;

} packet_t;

packet_t my_packet;

enum
typedef enum {IDLE, READ, WRITE}

state_t;

state_t current_state;

Arithmetic Operators

+ , - , * ,

/ , %

Addition, subtraction, multiplication,

division, modulo.

** Exponentiation.

Logical Operators

&& , || ,

!

Logical AND, OR, NOT. Operates on

boolean values (1 or 0).

Bitwise Operators

& , | ,

^ , ~

Bitwise AND, OR, XOR, NOT. Operates on

individual bits.

~& , ~| ,

~^

Bitwise NAND, NOR, XNOR.

Reduction Operators

& ,

| ,

^

Reduction AND, OR, XOR. Operates on all bits

of a vector to produce a single-bit result.

Shift Operators

<< , >> ,

<<< , >>>

Logical left shift, logical right shift,

arithmetic left shift, arithmetic right shift.

Comparison Operators

== , != ,

=== , !==

Equality, inequality, case equality, case

inequality. Case equality considers X and

Z.

> , < ,

>= , <=

Greater than, less than, greater than or

equal to, less than or equal to.

Sequential Blocks

always_

comb

Combinational logic block. Re-evaluates

whenever any of its inputs change.

always_

ff

Sequential logic block. Used for describing

flip-flops and registers.

always_

latch

Latch inferrence. Avoid using latches in

synchronous design.

Conditional Statements

if-else
if (condition) begin

 // statements

end else begin

 // statements

end

case
case (expression)

 value1: statement;

 value2: statement;

 default: statement;

endcase

Loop Statements

for
for (int i = 0; i < 10; i++) begin

 // statements

end

while
while (condition) begin

 // statements

end

repeat
repeat (8) begin

 // statements

end

Task and Function

tas

k

Can consume simulation time. Can have input,

output, and inout arguments.

func

tion

Cannot consume simulation time. Returns a

single value. Can only have input arguments.

Assertions

assert

property

Checks if a property holds true. Can be

used for functional coverage.

cover

property

Collects coverage information based on

property evaluation.

Constrained Random Verification

rand Specifies that a variable should be

randomized.

constrai

nt

Defines constraints that the random values

must satisfy.

Coverage

Functional

Coverage

Measure of how well the design’s

functionality has been exercised during

verification. Check covergroup and

coverpoint

Page 1 of 1 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/425-systemverilog-cheatsheet
http://cheatsheetshero.com/user/all/425-systemverilog-cheatsheet
http://cheatsheetshero.com/user/all/425-systemverilog-cheatsheet
https://cheatsheetshero.com/

