

Graph Algorithms Cheatsheet

A quick reference guide to graph algorithms, commonly used in coding interviews. Covers fundamental algorithms, their complexities, and common use cases

Graph Representations & Basics

Graph Representations

Adjacency Matrix	A 2D array where matrix[i][j] represents whether an edge exists between vertices i and j. • Space Complexity: O(V^2) • Good for: Dense graphs (many edges).
Adjacency List	An array of lists, where each list adj[i] stores the neighbors of vertex i. • Space Complexity: O(V + E) • Good for: Sparse graphs (few edges).
Edge List	A list of tuples, where each tuple (u, v, w) represents an edge from vertex u to vertex v with weight w. Space Complexity: O(E) Good for: Simple graph representation, useful for certain algorithms.

Basic Graph Properties

Vertex (Node)	A fundamental unit in a graph. Represented by a unique identifier.
Edge	 A connection between two vertices. Can be directed or undirected. Directed Edge: (u -> v): Edge from u to v only. Undirected Edge: (u <-> v): Edge between u and v in both directions.
Weight	A value assigned to an edge, representing cost, distance, or other metric.
Path	A sequence of vertices connected by edges.
Cycle	A path that starts and ends at the same vertex.
Connected Graph	A graph where there is a path between every pair of vertices.

Breadth-First Search (BFS)

BFS Overview

BFS is a graph traversal algorithm that explores the graph level by level, starting from a given source vertex. It uses a queue to maintain the order of vertices to visit.

- Time Complexity: ○(∨ + E)
- Space Complexity: ○(∨)
- Use Cases: Finding the shortest path in unweighted graphs, web crawling, social networking searches.

BFS Algorithm Steps

- 1. Initialize a queue and add the source vertex to it.
- 2. Mark the source vertex as visited.
- 3. While the queue is not empty:
 - Dequeue a vertex u from the queue.
 - For each neighbor v of u:
 - If v is not visited:
 - Enqueue v.
 - Mark v as visited.

BFS Example (Python)

```
from collections import deque
def bfs(graph, start):
    visited = set()
    queue = deque([start])
    visited.add(start)
    while queue:
        vertex = queue.popleft()
        print(vertex, end=" ") # Process the
vertex
         for neighbor in graph[vertex]:
             \quad \textbf{if} \ \text{neighbor} \ \textbf{not} \ \textbf{in} \ \text{visited:} \\
                 visited.add(neighbor)
                 queue.append(neighbor)
# Example graph
graph = {
    'A': ['B', 'C'],
    'B': ['A', 'D', 'E'],
    'C': ['A', 'F'],
    'D': ['B'],
    'E': ['B', 'F'],
    'F': ['C', 'E']
bfs(graph, 'A') # Output: A B C D E F
```

Depth-First Search (DFS)

DFS Overview

DFS is a graph traversal algorithm that explores as far as possible along each branch before backtracking. It uses a stack (implicitly through recursion) to keep track of the vertices to visit.

- Time Complexity: ○(∨ + E)
- Space Complexity: O(V) (in the worst case, for recursive calls)
- Use Cases: Detecting cycles in a graph, topological sorting, solving mazes.

DFS Algorithm Steps

- 1. Mark the current vertex as visited.
- 2. For each neighbor $\boxed{\mathbf{v}}$ of the current vertex:
 - If v is not visited:
 - Recursively call DFS on v.

Page 1 of 3 https://cheatsheetshero.com

DFS Example (Python)

```
def dfs(graph, vertex, visited):
    visited.add(vertex)
     print(vertex, end=" ") # Process the
vertex
     for neighbor in graph[vertex]:
          {\color{red} \textbf{if}} neighbor {\color{red} \textbf{not}} {\color{red} \textbf{in}} {\color{red} \textbf{visited}}:
              dfs(graph, neighbor, visited)
# Example graph
graph = {
    'A': ['B', 'C'],
     'B': ['A', 'D', 'E'],
     'C': ['A', 'F'],
     'D': ['B'],
     'E': ['B', 'F'],
     'F': ['C', 'E']
}
visited = set()
dfs(graph, 'A', visited) \# Output: A B D E F C
```

Dijkstra's Algorithm

Dijkstra's Overview

Dijkstra's algorithm is used to find the shortest paths from a source vertex to all other vertices in a weighted graph (with non-negative edge weights).

- Time Complexity: O(V^2) (with adjacency matrix), O(E log V) (with priority queue)
- Space Complexity: $O(\lor)$
- Use Cases: Finding shortest routes in navigation systems, network routing.

Dijkstra's Algorithm Steps

- 1. Initialize distances to all vertices as infinity, except the source vertex which is set to 0.
- 2. Create a set of unvisited vertices.
- 3. While the set of unvisited vertices is not empty:
 - Select the unvisited vertex with the smallest distance (using a priority queue for efficiency).
 - For each neighbor v of the selected vertex
 u :
 - Calculate the distance to v through u.
 - If this distance is shorter than the current distance to v:
 - Update the distance to v.

Dijkstra's Example (Python)

```
import heapq
def dijkstra(graph, start):
    distances = {vertex: float('infinity') for
vertex in graph}
    distances[start] = 0
    pq = [(0, start)]
    while pg:
         dist, vertex = heapq.heappop(pq)
         if dist > distances[vertex]:
             continue
          \begin{tabular}{ll} \textbf{for} & \textbf{neighbor, weight in} \\ \end{tabular} 
graph[vertex].items():
            distance = dist + weight
             \textbf{if} \ \texttt{distance} \ \textbf{<} \ \texttt{distances} [\texttt{neighbor}] \colon
                  distances[neighbor] = distance
                  heapq.heappush(pq, (distance,
neighbor))
    return distances
# Example graph (weighted)
graph = {
    'A': {'B': 5, 'C': 2},
    'B': {'A': 5, 'D': 1, 'E': 4},
    'C': {'A': 2, 'F': 9},
    'D': {'B': 1, 'E': 6},
    'E': {'B': 4, 'D': 6, 'F': 3},
    'F': {'C': 9, 'E': 3}
}
start_node = 'A'
shortest_paths = dijkstra(graph, start_node)
print(f"Shortest paths from {start_node}:
{shortest_paths}")
# Expected output (order may vary slightly due
# Shortest paths from A: {'A': 0, 'B': 5, 'C':
2, 'D': 6, 'E': 9, 'F': 11}
```