

# **Biomedical Engineering Cheatsheet**

A quick reference guide for key concepts, formulas, and techniques in biomedical engineering, covering biomechanics, biomaterials, bioinstrumentation, and bioimaging.



# **Biomechanics**

## Stress and Strain

| Stress (σ)             | Force per unit area: σ = F/A<br>Where:<br>F = Force (N)<br>A = Area (m²)<br>Units: Pascals (Pa) or N/m²                                                               |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Strain (ε)             | Change in length per unit length: $\epsilon = \Delta L/L_0$<br>Where:<br>$\Delta L = Change in length (m)$<br>$L_0 = Original length (m)$<br>Strain is dimensionless. |
| Young's<br>Modulus (E) | Measure of stiffness: E = $\sigma/\epsilon$ Units: Pascals (Pa) or N/m <sup>2</sup>                                                                                   |
| Shear Stress<br>(τ)    | Force acting parallel to the surface per<br>unit area: τ = F/A<br>Units: Pascals (Pa) or N/m²                                                                         |
| Shear Strain<br>(y)    | Change in angle: γ = Δx/L <sub>0</sub><br>Where:<br>Δx = Displacement (m)<br>L <sub>0</sub> = Original length (m)<br>Strain is dimensionless.                         |
| Shear Modulus<br>(G)   | Measure of resistance to shear<br>deformation: G = τ/γ<br>Units: Pascals (Pa) or N/m²                                                                                 |

### Viscoelasticity

### Viscoelastic materials exhibit both viscous and elastic characteristics when undergoing deformation.

#### Key Concepts:

- Creep: Time-dependent deformation under constant load.
- Stress Relaxation: Time-dependent decrease in stress under constant strain.
- Hysteresis: Energy loss during loading and unloading cycle.

### Common Models:

- Maxwell Model: Represents a spring and dashpot in series.
- Kelvin-Voigt Model: Represents a spring and dashpot in parallel.

### Fluid Mechanics

| Reynolds<br>Number (Re) | Predicts flow regime:<br>Re = $(\rho vL)/\mu$<br>Where:<br>$\rho$ = Density (kg/m <sup>3</sup> )<br>v = Velocity (m/s)<br>L = Characteristic length (m)<br>$\mu$ = Dynamic viscosity (Pa·s)<br>Re < 2300: Laminar flow<br>Re > 4000: Turbulent flow                 |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Viscosity (µ)           | Measure of a fluid's resistance to flow.<br>Units: Pascal-seconds (Pa·s)                                                                                                                                                                                            |
| Poiseuille's Law        | Describes laminar flow in a cylindrical<br>tube:<br>$Q = (\pi r^4 \Delta P)/(8\mu L)$<br>Where:<br>$Q = Flow rate (m^3/s)$<br>r = Radius of the tube (m)<br>$\Delta P = Pressure difference (Pa)$<br>$\mu = Dynamic viscosity (Pa·s)$<br>L = Length of the tube (m) |

### **Biomaterials**

### **Material Properties**

| Biocompatibility         | The ability of a material to perform with an appropriate host response in a specific application.                     |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Biodegradability         | The ability of a material to degrade or be absorbed in the body.                                                      |
| Surface<br>Properties    | Surface energy, roughness, and<br>chemical composition affect protein<br>adsorption and cell adhesion.                |
| Mechanical<br>Properties | Tensile strength, compressive<br>strength, Young's modulus, and<br>Poisson's ratio determine structural<br>integrity. |

### Types of Biomaterials

# Metals:

- Stainless steel, titanium alloys, cobalt-chromium alloys.
- Used in implants, prosthetics, and surgical instruments.

### Ceramics:

- Alumina, zirconia, hydroxyapatite. .
- Used in bone grafts, dental implants, and coatings.

### Polymers:

- . Polyethylene, polypropylene, silicone, poly(lactic acid) (PLA), poly(glycolic acid) (PGA).
- Used in sutures, drug delivery systems, and tissue engineering scaffolds.

#### Composites:

- Combination of two or more materials (e.g., carbon fiber reinforced polymers).
- Used in load-bearing implants.

### **Biomaterial Degradation**

| Hydrolysis               | Chemical breakdown of a material due to reaction with water. |
|--------------------------|--------------------------------------------------------------|
| Enzymatic<br>Degradation | Breakdown of a material by enzymes present in the body.      |
| Oxidation                | Chemical degradation due to reaction with oxygen.            |
| Corrosion                | Electrochemical degradation of metals.                       |

### Sensors and Transducers

| Strain Gauge           | Measures strain by detecting changes in electrical resistance.      |
|------------------------|---------------------------------------------------------------------|
| Thermistor             | Measures temperature by detecting changes in electrical resistance. |
| Pressure<br>Transducer | Measures pressure by converting it into an electrical signal.       |
| Electrode              | Measures electrical potential differences (e.g., ECG, EEG).         |

## Bioimaging

# Imaging Modalities

| X-ray                                  | Uses electromagnetic radiation to<br>create images of bones and dense<br>tissues.     |
|----------------------------------------|---------------------------------------------------------------------------------------|
| Computed<br>Tomography (CT)            | Uses X-rays to create cross-<br>sectional images of the body.                         |
| Magnetic<br>Resonance Imaging<br>(MRI) | Uses magnetic fields and radio<br>waves to create detailed images of<br>soft tissues. |
| Ultrasound                             | Uses sound waves to create real-<br>time images of organs and tissues.                |
| Positron Emission<br>Tomography (PET)  | Uses radioactive tracers to visualize metabolic activity in the body.                 |

### Signal Processing

Analog-to-Digital Conversion (ADC) Digital Signal Processing (DSP)

Amplification Filtering

## **Common Instruments**

| Electrocardiograph (ECG)       | Records electrical activity of the heart. |
|--------------------------------|-------------------------------------------|
| Electroencephalograph<br>(EEG) | Records electrical activity of the brain. |
| Electromyograph (EMG)          | Records electrical activity of muscles.   |
| Blood Pressure Monitor         | Measures arterial blood pressure.         |

## Image Processing

| Image Enhancement    |  |
|----------------------|--|
| Image Segmentation   |  |
| Image Registration   |  |
| Image Reconstruction |  |
|                      |  |

## **Contrast Agents**

| lodine-based         | Used in CT scans to enhance the visibility of blood vessels and organs.          |
|----------------------|----------------------------------------------------------------------------------|
| Gadolinium-<br>based | Used in MRI to enhance the visibility of soft tissues and blood vessels.         |
| Microbubbles         | Used in ultrasound to enhance the visibility of blood flow and tissue perfusion. |