
JUnit Testing Cheatsheet
A concise reference for writing effective unit tests in Java using JUnit. Covers annotations, assertions, test fixtures, and best practices for robust

testing.

JUnit Fundamentals

Advanced Assertions & Features

Core Annotations

@Test Marks a method as a test case. JUnit

will execute this method when running

tests.

@BeforeEach

(JUnit 5) /

@Before

(JUnit 4)

Specifies a method to be executed

before each test method in the class.

Used for setting up test fixtures.

@AfterEach

(JUnit 5) /

@After (JUnit

4)

Specifies a method to be executed

after each test method in the class.

Used for tearing down test fixtures.

@BeforeAll

(JUnit 5) /

@BeforeClas

s (JUnit 4)

Specifies a method to be executed

once before any of the test methods in

the class are executed. Must be static.

@AfterAll

(JUnit 5) /

@AfterClass

(JUnit 4)

Specifies a method to be executed

once after all of the test methods in

the class have been executed. Must be

static.

@Disabled

(JUnit 5) /

@Ignore

(JUnit 4)

Marks a test method as

disabled/ignored. The test will not be

executed.

Basic Assertions

assertEquals(e

xpected,

actual)

Asserts that two values are equal.

Can be used with various data types.

assertTrue(con

dition)

Asserts that a condition is true.

assertFalse(co

ndition)

Asserts that a condition is false.

assertNull(obj

ect)

Asserts that an object is null.

assertNotNull(

object)

Asserts that an object is not null.

assertSame(exp

ected, actual)

Asserts that two objects refer to the

same object.

assertNotSame(

expected,

actual)

Asserts that two objects do not

refer to the same object.

Exception Testing

assertThrows(expectedType, executable) - Asserts

that the execution of the supplied executable throws an

exception of the expected type.

@Test

void testException() {

 IllegalArgumentException exception =

assertThrows(IllegalArgumentException.class,

() -> {

 throw new

IllegalArgumentException("Invalid argument");

 });

 assertEquals("Invalid argument",

exception.getMessage());

}

Page 1 of 3 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/392-junit-testing-cheatsheet
http://cheatsheetshero.com/user/all/392-junit-testing-cheatsheet
http://cheatsheetshero.com/user/all/392-junit-testing-cheatsheet
https://cheatsheetshero.com/

Test Fixtures and Suites

Advanced Assertions (JUnit 5)

assertAll(exec

utables...)

Asserts that all supplied executables

do not throw exceptions. Useful for

grouping multiple assertions.

@Test

void testMultipleAssertions()

{

 assertAll(

 () -> assertEquals(2,

1 + 1),

 () -> assertTrue(5 >

3)

);

}

assertTimeout(

duration,

executable)

Asserts that the execution of the

supplied executable completes

before the given timeout.

@Test

void testTimeout() {

assertTimeout(Duration.ofSeco

nds(1), () -> {

 Thread.sleep(500);

 });

}

assertTimeoutP

reemptively(dur

ation,

executable)

Similar to assertTimeout but

terminates the execution

preemptively if the timeout is

exceeded.

@Test

void

testTimeoutPreemptively() {

assertTimeoutPreemptively(Dur

ation.ofSeconds(1), () -> {

 Thread.sleep(2000);

// This will likely fail

 });

}

Assumptions

Assumptions are conditions that must be true for a test to

be meaningful. If an assumption fails, the test is aborted.

assumeTrue(condition) - Assumes that the

condition is true.

assumeFalse(condition) - Assumes that the

condition is false.

assumingThat(assumption, executable) -

Executes the executable only if the assumption is

met.

@Test

void testWithAssumption() {

assumeTrue(System.getProperty("os.name").start

sWith("Windows"));

 // This test will only run on Windows

 assertEquals("C:\\",

System.getProperty("user.home"));

}

Parameterized Tests (JUnit 5)

Parameterized tests allow you to run the same test

multiple times with different input values.

@ParameterizedTest - Marks a method as a

parameterized test.

@ValueSource - Provides a simple array of literal

values as the source of arguments.

@CsvSource - Allows you to specify multiple

arguments as comma-separated values.

@ParameterizedTest

@ValueSource(ints = { 2, 4, 6 })

void testNumberIsEven(int number) {

 assertTrue(number % 2 == 0);

}

@ParameterizedTest

@CsvSource({"1,one", "2,two", "3,three"})

void testNumberName(int number, String name) {

 assertEquals(name, numberToName(number));

}

Page 2 of 3 https://cheatsheetshero.com

https://cheatsheetshero.com/

Best Practices

Test Fixtures

Test fixtures provide a fixed baseline for running tests. They ensure that the tests are

executed in a consistent and repeatable environment.

Use @BeforeEach (JUnit 5) / @Before (JUnit 4) to set up the fixture before each

test.

Use @AfterEach (JUnit 5) / @After (JUnit 4) to tear down the fixture after each

test.

Use @BeforeAll (JUnit 5) / @BeforeClass (JUnit 4) to set up the fixture once

before all tests.

Use @AfterAll (JUnit 5) / @AfterClass (JUnit 4) to tear down the fixture once

after all tests.

class MyTest {

 private MyObject obj;

 @BeforeEach

 void setUp() {

 obj = new MyObject();

 obj.initialize();

 }

 @AfterEach

 void tearDown() {

 obj.cleanup();

 obj = null;

 }

 @Test

 void testSomething() {

 // Test using obj

 }

}

Test Suites

Test suites allow you to group multiple test classes into a single execution unit.

JUnit 4: Use @RunWith(Suite.class) and

@Suite.SuiteClasses({TestClass1.class, TestClass2.class}) .

JUnit 5: Use @Suite and @SelectClasses({TestClass1.class,

TestClass2.class}) .

@RunWith(Suite.class)

@Suite.SuiteClasses({TestClass1.class, TestClass2.class})

public class MyTestSuite {

 // Empty class, acts as a holder for the suite

}

@Suite

@SelectClasses({TestClass1.class, TestClass2.class})

public class MyTestSuite {}

Writing Effective Tests

Test one thing at a time: Each test method should focus on verifying a single aspect

of the code.

Write clear and descriptive test names: Test names should clearly indicate what is

being tested.

Follow the Arrange-Act-Assert pattern: Arrange the test data, act by invoking the

method under test, and assert the expected outcome.

Keep tests independent: Tests should not rely on the state of other tests.

Test edge cases and boundary conditions: Ensure that the code handles unusual or

extreme inputs correctly.

Write tests that are repeatable and reliable: Tests should produce the same results

every time they are run.

Cover all code paths: Ensure your tests provide sufficient coverage of your code.

Use meaningful assertion messages: Provide clear messages when assertions fail to

help identify the root cause.

Mocking

Mocking is a technique used to isolate the code under test from its dependencies. Mock

objects simulate the behavior of real objects, allowing you to verify interactions and

control the test environment.

Mockito: A popular Java mocking framework that provides a simple and intuitive API.

EasyMock: Another Java mocking framework with similar capabilities.

import org.mockito.Mockito;

import static org.mockito.Mockito.*;

import org.junit.jupiter.api.Test;

class MyServiceTest {

 @Test

 void testDoSomething() {

 MyDependency dependency = mock(MyDependency.class);

 MyService service = new MyService(dependency);

 when(dependency.getValue()).thenReturn(10);

 service.doSomething();

 verify(dependency).getValue();

 }

}

Page 3 of 3 https://cheatsheetshero.com

https://cheatsheetshero.com/

