

Mechanical Engineering Cheatsheet

A quick reference guide covering fundamental concepts, formulas, and principles in mechanical engineering. Ideal for students, engineers, and professionals.

Thermodynamics

Basic Concepts

Zeroth Law:	If two thermodynamic systems are each in thermal equilibrium with a third, then they are in thermal equilibrium with each other.
First Law:	Energy can neither be created nor destroyed. Conservation of energy: $\Delta U = Q - W$, where U is internal energy, Q is heat added, and W is work done.
Second Law:	The total entropy of an isolated system can only increase over time or remain constant in ideal cases. Entropy is a measure of disorder.
Third Law:	As temperature approaches absolute zero, the entropy of a system approaches a minimum or zero value.
Enthalpy (H):	A thermodynamic property defined as H = U + PV, where U is internal energy, P is pressure, and V is volume.
Entropy (S):	A measure of the disorder of a system. $\Delta S = Q/T$ for a reversible process at constant temperature.

Mass per unit volume: $\rho = m/V$

of water: SG = pfluid/pwater

Dynamic viscosity.

 $v = \mu/\rho$

Weight per unit volume: $\gamma = \rho g$, where g is acceleration due to gravity.

Ratio of a fluid's density to the density

Measure of a fluid's resistance to flow.

Ratio of dynamic viscosity to density:

Force per unit length acting at the interface between two fluids.

Thermodynamic Processes

lsothermal:	Constant temperature process. PV = constant.
Adiabatic:	No heat transfer. PVy = constant, where y is the heat capacity ratio (Cp/Cv).
Isobaric:	Constant pressure process. V/T = constant.
Isochoric (Isometric):	Constant volume process. P/T = constant.
Polytropic:	Process described by PVn = constant, where n is the polytropic index.
Throttling:	Adiabatic process where enthalpy remains constant. Used in refrigeration.

Heat Engines and Refrigerators

Heat Engine Efficiency (η):	η = W/QH = 1 - (QC/QH), where W is work done, QH is heat input, and QC is heat rejected.
Carnot Efficiency (ηCarnot):	ηCarnot = 1 - (TC/TH), where TC is the cold reservoir temperature, and TH is the hot reservoir temperature (in Kelvin).
Coefficient of Performance (COP) - Refrigerator:	COPR = QC/W = QC/(QH - QC)
Coefficient of Performance (COP) - Heat Pump:	COPHP = QH/W = QH/(QH - QC)

Fluid Statics

Pressure (P):	Force per unit area: P = F/A
Hydrostatic Pressure:	P = $\rho gh,$ where h is the depth from the surface.
Buoyancy (FB):	Upward force exerted by a fluid that opposes the weight of an immersed object: FB = pfluidVdisplacedg
Manometry:	Use of liquid columns to measure pressure differences.

Fluid Dynamics

Continuity Equation:	A1V1 = A2V2 (for incompressible fluids)
Bernoulli's Equation:	P + (1/2)ρV2 + ρgh = constant (along a streamline)
Reynolds Number (Re):	Re = (ρ VD)/ μ , where V is flow velocity, D is characteristic length, and μ is dynamic viscosity. Indicates laminar (Re < 2100) or turbulent flow (Re > 4000).
Darcy- Weisbach Equation:	$\Delta P = f (L/D) (\rho V2/2)$, where f is the friction factor.

Materials Science

Fluid Mechanics

Density (p):

(y):

(SG):

Specific Weight

Specific Gravity

Viscosity (µ):

Kinematic

(σ):

Viscosity (v):

Surface Tension

Material Properties

Young's Modulus (E):	Measure of stiffness or resistance to elastic deformation: E = Stress/Strain
Poisson's Ratio (v):	Ratio of transverse strain to axial strain.
Yield Strength (σy):	Stress at which a material begins to deform plastically.
Tensile Strength (σu):	Maximum stress a material can withstand before breaking.
Hardness:	Resistance to localized plastic deformation (e.g., indentation).
Ductility:	Ability of a material to deform plastically before fracture.

Mechanics of Materials

Stress and Strain

Stress (σ):	Force per unit area: σ = F/A
Strain (ε):	Deformation per unit length: $\epsilon = \Delta L/L$
Shear Stress (τ):	Stress acting parallel to a surface.
Shear Strain (y):	Angular deformation.
Hooke's Law:	σ = E ϵ (in the elastic region)

Material Types

Metals: High strength, ductility, and thermal/electrical
conductivity. Examples: Steel, Aluminum, Copper.

Ceramics: High hardness, brittleness, and resistance to high temperatures. Examples: Alumina, Silicon Carbide.

Polymers: Low density, flexibility, and can be easily molded. Examples: Polyethylene, Polypropylene.

Composites: Combination of two or more materials to achieve enhanced properties. Examples: Carbon fiber reinforced polymer (CFRP).

Stress Analysis

Axial Stress (σ):	Stress due to axial force: σ = P/A, where P is the axial force and A is the cross- sectional area.
Bending Stress (σb):	Stress due to bending moment: σb = My/I, where M is the bending moment, y is the distance from the neutral axis, and I is the moment of inertia.
Shear Stress in Beams (τ):	τ = VQ/Ib, where V is the shear force, Q is the first moment of area, I is the moment of inertia, and b is the width of the beam.
Torsional Shear Stress (τ):	τ = Tr/J, where T is the torque, r is the radius, and J is the polar moment of inertia.
Principal Stresses:	Maximum and minimum normal stresses at a point.

	Beam Deflection		
re P	Deflection Formulas:	Vary based on loading and support conditions. Common cases include cantilever beams and simply	Ma: whe
y nd l	Cantilever Beam with Point Load at End:	supported beams with various loads. Maximum deflection (δ) = (PL3)/(3EI), where P is the load, L is the length, E is Young's modulus, and I is the	Dis whe at y Ma
્ર is ent m.	Simply Supported Beam with Uniform Load:	moment of inertia. Maximum deflection (δ) = (5wL4)/(384EI), where w is the uniform load per unit length.	the of t

Failure Theories

Maximum Shear Stress Theory (Tresca): Failure occurs when maximum shear stress exceeds the shear strength of the material.

Distortion Energy Theory (von Mises): Failure occurs when the distortion energy reaches the distortion energy at yield in a simple tension test.

Maximum Principal Stress Theory: Failure occurs when the maximum principal stress exceeds the tensile strength of the material.