
Algorithmic Problem Solving Cheatsheet
A quick reference guide to algorithmic problem-solving techniques, data structures, and common algorithms, useful for coding interviews and

general problem-solving.

Core Concepts & Strategies

Essential Data Structures

Problem Solving Framework

1. Understand the Problem:

Clarify ambiguities: Ask clarifying questions to fully understand the

requirements.

Identify inputs, outputs, and constraints.

Edge cases: Consider empty inputs, null values, and large datasets.

2. Design an Algorithm:

Break down the problem into smaller, manageable subproblems.

Choose appropriate data structures.

Consider time and space complexity.

Explore different approaches (e.g., brute force, divide and conquer,

dynamic programming).

3. Implement the Algorithm:

Write clean, well-documented code.

Handle edge cases and potential errors.

Follow coding style guidelines.

4. Test Your Solution:

Test with a variety of inputs, including edge cases.

Debug and correct errors.

Verify that the solution meets the requirements.

5. Analyze and Optimize:

Analyze time and space complexity.

Identify bottlenecks.

Optimize the algorithm for better performance (e.g., using more

efficient data structures or algorithms).

Common Algorithmic Techniques

Brute Force Try all possible solutions. Simple to implement but often

inefficient.

Divide and

Conquer

Break the problem into smaller subproblems, solve them

recursively, and combine the results. (e.g., Merge Sort,

Quick Sort)

Dynamic

Programming

Solve overlapping subproblems by storing their solutions

to avoid recomputation. (e.g., Fibonacci sequence,

knapsack problem)

Greedy

Algorithms

Make locally optimal choices at each step to find a global

optimum. (e.g., Dijkstra’s algorithm, Huffman coding)

Backtracking Explore potential solutions incrementally, abandoning

partial solutions when they don’t lead to a valid solution.

(e.g., N-Queens problem, Sudoku solver)

Arrays

Description Contiguous block of

memory storing elements of

the same data type.

Access O(1) - Random access using

index.

Insertion/Deletion O(n) - Requires shifting

elements.

Use Cases Storing lists of elements,

implementing other data

structures (e.g., stacks,

queues).

Linked Lists

Description Sequence of nodes, each

containing data and a

pointer to the next node.

Access O(n) - Sequential access.

Insertion/Deletion O(1) - If the node to be

deleted or inserted after is

known.

Use Cases Implementing stacks,

queues, and representing

sequences where frequent

insertions/deletions are

needed.

Hash Tables

Description Stores key-value pairs, using

a hash function to map keys

to indices in an array.

Access O(1) - Average case. O(n) -

Worst case (collisions).

Insertion/Deletion O(1) - Average case. O(n) -

Worst case.

Use Cases Implementing dictionaries,

caching, and frequency

counting.

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/383-algorithmic-problem-solving-cheatsheet
http://cheatsheetshero.com/user/all/383-algorithmic-problem-solving-cheatsheet
http://cheatsheetshero.com/user/all/383-algorithmic-problem-solving-cheatsheet
https://cheatsheetshero.com/


Common Algorithms

Complexity Analysis & Optimization

Trees

Description Hierarchical data structure

consisting of nodes

connected by edges. Binary

trees, binary search trees,

and heaps are common

types.

Access O(log n) - For balanced

binary search trees.

Insertion/Deletion O(log n) - For balanced

binary search trees.

Use Cases Representing hierarchical

data, searching, sorting, and

implementing priority

queues.

Sorting Algorithms

Bubble

Sort

O(n^2) - Compares adjacent

elements and swaps them if they are

in the wrong order.

Insertion

Sort

O(n^2) - Inserts each element into

its correct position in the sorted

portion of the array.

Merge

Sort

O(n log n) - Divides the array into

smaller subproblems, sorts them

recursively, and merges the results.

Quick

Sort

O(n log n) average, O(n^2) worst -

Chooses a pivot element and

partitions the array around it.

Heap

Sort

O(n log n) - Uses a heap data

structure to sort the array.

Searching Algorithms

Linear

Search

O(n) - Sequentially checks each

element in the array until the target is

found.

Binary

Search

O(log n) - Repeatedly divides the

search interval in half. Requires a

sorted array.

Graph Algorithms

Breadth-First Search (BFS): Explores the graph

level by level, starting from a source node. Uses a

queue.

Depth-First Search (DFS): Explores the graph by

going as deep as possible along each branch

before backtracking. Uses a stack (implicitly

through recursion).

Dijkstra’s Algorithm: Finds the shortest paths

from a source node to all other nodes in a

weighted graph.

Bellman-Ford Algorithm: Finds the shortest paths

from a source node to all other nodes in a

weighted graph, even with negative edge

weights.

Time Complexity

Describes how the execution time of an algorithm

grows as the input size increases.

O(1): Constant time.

O(log n): Logarithmic time.

O(n): Linear time.

O(n log n): Linearithmic time.

O(n^2): Quadratic time.

O(2^n): Exponential time.

O(n!): Factorial time.

Space Complexity

Describes how the memory usage of an algorithm

grows as the input size increases.

O(1): Constant space.

O(n): Linear space.

O(n^2): Quadratic space.

Optimization Techniques

Memoization Storing the results of

expensive function calls and

reusing them when the same

inputs occur again (Dynamic

Programming).

Caching Storing frequently accessed

data in a cache for faster

retrieval.

Using

Appropriate

Data Structures

Choosing the right data

structure can significantly

improve performance (e.g.,

using a hash table for fast

lookups).

Algorithmic

Optimization

Replacing a less efficient

algorithm with a more

efficient one.

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

