
Puppet Cheatsheet
A comprehensive cheat sheet covering essential Puppet concepts, syntax, and commands for effective infrastructure management and automation

in DevOps and Cloud environments.

Puppet Fundamentals

Puppet Resources

Puppet Modules & Classes

Core Concepts

Puppet Agent: The client application that runs on

managed nodes and applies configurations.

Puppet Master: The central server that compiles catalogs

and serves them to agents.

Catalog: A document describing the desired state of a

node.

Manifests: Files containing Puppet code that define

resources and configurations.

Modules: Reusable collections of manifests, templates,

and other files.

Resources: Represent individual components of a system

(e.g., files, packages, services).

Facts: Information about a node, such as its hostname, IP

address, operating system, etc. Facts are automatically

discovered by Facter.

Classes: Reusable blocks of Puppet code that define a

specific configuration. Classes are the primary means of

organizing Puppet code.

Puppet Workflow

1. Agent Requests Catalog: Puppet Agent sends facts

to the Puppet Master.

2. Master Compiles Catalog: The Puppet Master uses

facts and manifests to compile a catalog.

3. Catalog Sent to Agent: The Puppet Master sends

the compiled catalog to the Agent.

4. Agent Applies Catalog: The Puppet Agent applies

the configuration defined in the catalog.

5. Agent Reports Status: The Agent sends a report

back to the Puppet Master about the configuration

run.

Basic Syntax

Resource Declaration
file {

'/tmp/example.txt':

 ensure => present,

 content => 'Hello,

world!',

}

Variable Assignment
$hostname =

$facts['hostname']

Conditional

Statements
if $osfamily == 'RedHat'

{

 package { 'httpd':

 ensure => installed,

 }

}

Common Resource Types

file: Manages files and directories.

package: Manages software packages.

service: Manages system services.

user: Manages user accounts.

group: Manages group accounts.

cron: Manages cron jobs.

exec: Executes arbitrary commands.

File Resource Attributes

ensur

e

Specifies whether the file should be present,

absent, a directory, a link, etc.

path The path to the file.

conte

nt

The content of the file.

sourc

e

The source file to copy content from (used for

templates).

owne

r

The owner of the file.

grou

p

The group of the file.

mode The permissions of the file (e.g., ‘0644’).

Package Resource Attributes

ensur

e

Specifies whether the package should be

installed, absent, or a specific version.

name The name of the package.

provi

der

The package provider (e.g., yum, apt, gem).

Module Structure

A Puppet module typically has the following directory

structure:

manifests/init.pp : Contains the main class definition.

files/ : Contains static files to be copied to managed

nodes.

templates/ : Contains templates to generate dynamic

configuration files.

metadata.json : Contains metadata about the module

(e.g., name, version, dependencies).

module_name/

├── manifests/

│ └── init.pp

├── files/

├── templates/

└── metadata.json

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/382-puppet-cheatsheet
http://cheatsheetshero.com/user/all/382-puppet-cheatsheet
http://cheatsheetshero.com/user/all/382-puppet-cheatsheet
https://cheatsheetshero.com/

Advanced Puppet Features

Defining Classes

Basic Class

Definition
class mymodule {

 # Resource declarations go

here

 file { '/tmp/example.txt':

 ensure => present,

 content => 'This file is

managed by Puppet.',

 }

}

Class Parameters
class mymodule (

 $param1 = 'default_value',

 $param2,

) {

 # Use parameters in

resource declarations

 file { '/tmp/example.txt':

 ensure => present,

 content => "Parameter 1

is ${param1}",

 }

}

Including Classes

inclu

de

Simplest way to include a class. Can only be

used once per class.

include mymodule

requi

re

Ensures that the class is applied before the

current class.

class {'mymodule':

 require => Class['othermodule'],

}

conta

in

Similar to include, but allows classes to be

declared multiple times.

contain mymodule

Templates

Puppet uses Embedded Ruby (ERB) templates to

generate dynamic configuration files. Templates are

located in the templates/ directory of a module.

Example (mytemplate.erb):

To use a template in a manifest:

ServerName <%= @hostname %>

DocumentRoot <%= @docroot %>

file { '/etc/httpd/conf/httpd.conf':

 ensure => present,

 source =>

'puppet:///modules/mymodule/mytemplate.erb',

}

Facts and Variables

Accessing

Facts
$osfamily = $facts['os']

['family']

if $osfamily == 'RedHat' {

 # Do something specific to

RedHat systems

}

Custom

Facts

Custom facts can be created in Ruby or as

executable scripts. They are stored in the

lib/facter directory of a module.

Variables
$myvariable = 'somevalue'

file { '/tmp/example.txt':

 ensure => present,

 content => "The variable is

${myvariable}",

}

Hiera

Hiera is a key-value lookup tool for Puppet. It allows you

to externalize data from your Puppet code.

Example (hiera.yaml):

Example (common.yaml):

Using Hiera data in Puppet:

:backends:

 - yaml

:yaml:

 :datadir:

/etc/puppetlabs/code/environments/%

{environment}/data

:hierarchy:

 - "nodes/%{::trusted.certname}"

 - common

ntp::servers:

 - 0.pool.ntp.org

 - 1.pool.ntp.org

class ntp {

 $servers = hiera('ntp::servers', [])

 package { 'ntp':

 ensure => installed,

 }

 file { '/etc/ntp.conf':

 ensure => present,

 content => template('ntp/ntp.conf.erb'),

 require => Package['ntp'],

 }

}

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

