
GitLab CI/CD Cheatsheet
A comprehensive cheat sheet for GitLab CI/CD, covering essential concepts, syntax, and best practices for automating your software development

pipeline.

GitLab CI/CD Basics

Advanced Configuration

Conditional Execution & Triggers

Core Concepts

CI/CD: Continuous Integration and Continuous

Delivery/Deployment. Automates the software

development lifecycle.

GitLab CI/CD: Integrated CI/CD tool within GitLab for

building, testing, and deploying code.

.gitlab-ci.yml: Configuration file defining the CI/CD

pipeline. Located in the root of your repository.

Pipeline: A set of stages and jobs defining the CI/CD

process.

Stage: A logical division within a pipeline. Stages run

sequentially.

Job: An individual task within a stage. Jobs run in parallel

within a stage.

Runner: Executes the jobs defined in the .gitlab-

ci.yml file. Can be shared or specific to a project/group.

Artifacts: Files or directories generated by a job that can

be used by subsequent jobs or downloaded.

.gitlab-ci.yml Structure

stages:

 - build

 - test

 - deploy

build_job:

 stage: build

 script:

 - echo "Building..."

 - ./build_script.sh

test_job:

 stage: test

 script:

 - echo "Testing..."

 - ./test_script.sh

deploy_job:

 stage: deploy

 script:

 - echo "Deploying..."

 - ./deploy_script.sh

Key Directives

stages Defines the stages of the pipeline (e.g.,

build, test, deploy).

image Specifies the Docker image to use for the

job.

script Commands to execute within the job.

stage Assigns the job to a specific stage.

only / ex

cept

Controls when a job runs based on branch,

tags, etc.

variable

s

Defines environment variables for the job.

Variables

Define variables in

.gitlab-ci.yml :
variables:

 MAVEN_CLI_OPTS: "-s

.m2/settings.xml --batch-

mode"

Precedence

(highest to lowest):

CI/CD variables -> Project variables

-> Group variables -> Instance

variables

Masked variables: Sensitive variables can be masked

in the GitLab UI to prevent them

from being printed in job logs.

Artifacts

job_name:

 stage: ...

 script: ...

 artifacts:

 paths:

 - path/to/artifact1

 - path/to/artifact2

 expire_in: 1 week

paths - Specifies the files/directories to store as

artifacts.

expire_in - Sets the expiration time for the artifacts.

Artifacts can be downloaded or passed to subsequent

jobs.

Caching

cache:

 key: "$CI_COMMIT_REF_SLUG"

 paths:

 - .m2/repository

key - A unique key for the cache. Using

$CI_COMMIT_REF_SLUG caches per branch.

paths - Specifies the directories to cache.

Caching can significantly speed up build times by reusing

dependencies and build outputs.

Only/Except

only Run job only for specified refs (branches,

tags).

excep

t

Run job for all refs except specified ones.

Example:
job_name:

 stage: ...

 script: ...

 only:

 - main

 - tags

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/381-gitlab-ci-cd-cheatsheet
http://cheatsheetshero.com/user/all/381-gitlab-ci-cd-cheatsheet
http://cheatsheetshero.com/user/all/381-gitlab-ci-cd-cheatsheet
https://cheatsheetshero.com/

Best Practices & Tips

Rules

More flexible conditional execution based on various

conditions.

job_name:

 stage: ...

 script: ...

 rules:

 - if: '$CI_PIPELINE_SOURCE ==

"merge_request_event"'

 when: always

 - when: never

if - Specifies the condition.

when - Specifies when to run the job (always ,

on_success , on_failure , manual , delayed ,

never).

Pipeline Triggers

Trigger pipelines from other pipelines or external sources.

trigger_job:

 stage: deploy

 trigger:

 project: group/project

 branch: main

Use trigger: to specify the project and branch to

trigger.

Security

Use masked variables for sensitive information

(passwords, API keys).

Avoid storing secrets directly in .gitlab-ci.yml .

Regularly audit your CI/CD configuration.

Use GitLab’s security scanning tools to identify

vulnerabilities in your code and dependencies.

Performance

Use caching to reduce build times.

Optimize your Docker images for size and performance.

Run jobs in parallel whenever possible.

Use GitLab Runner autoscaling to dynamically scale your

runner infrastructure based on demand.

Maintainability

Keep your .gitlab-ci.yml file organized and well-

documented.

Use templates to reuse common CI/CD configurations

across multiple projects.

Regularly update your CI/CD configuration to take

advantage of new features and improvements.

Test your CI/CD pipeline thoroughly to ensure it is

working as expected.

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

