
Prolog Cheat Sheet
A concise reference for Prolog syntax, predicates, and common programming patterns.

Basic Syntax and Data Types

List Manipulation

Arithmetic Operations

Control Flow and Logic

Facts and Rules

Facts: Declare relationships between objects.

parent(john, mary). (John is a parent of

Mary)

Rules: Define conditional relationships.

ancestor(X, Y) :- parent(X, Y). (X is an

ancestor of Y if X is a parent of Y)

ancestor(X, Y) :- parent(X, Z),

ancestor(Z, Y). (X is an ancestor of Y if X is

a parent of Z and Z is an ancestor of Y)

Queries: Ask questions about the relationships.

?- parent(john, mary). (Is John a parent

of Mary?)

?- ancestor(john, Y). (Who are John’s

descendants?)

Data Types

Atoms: Constants, starting with a lowercase letter.

Examples: john , mary , cat

Numbers: Integers and floating-point numbers.

Examples: 1 , 3.14 , -5

Variables: Start with an uppercase letter or

underscore.

Examples: X , Y , _Result

Structures: Complex terms, combining a functor

(name) and arguments.

Example: book(title, author)

Lists: Ordered collections of terms.

Example: [1, 2, 3] , [a, b, c]

[Head | Tail] - Represents a list with

Head as the first element and Tail as the

rest of the list.

Operators

:- Rule definition (if).

, Conjunction (and).

; Disjunction (or).

= Unification (attempt to make terms identical).

\= Not unifiable.

Basic List Operations

Lists are a fundamental data structure in Prolog.

They are enclosed in square brackets [] and elements

are separated by commas.

[Head | Tail] notation is used to represent a list,

where Head is the first element and Tail is the rest of

the list.

Predicates for List Manipulation

member(X,

List)

Succeeds if X is an element of

List .

?- member(b, [a, b, c]).

true.

append(List1,

List2, List3)

Succeeds if List3 is the result of

appending List1 and List2 .

?- append([a, b], [c, d], X).

X = [a, b, c, d].

length(List,

Length)

Succeeds if Length is the length of

List .

?- length([a, b, c], X).

X = 3.

reverse(List,

ReversedList)

Succeeds if ReversedList is the

reverse of List .

?- reverse([a, b, c], X).

X = [c, b, a].

Example: Defining `member`

member(X, [X | _]). % X is a member if it's

the head.

member(X, [_ | Tail]) :- member(X, Tail). %

Otherwise, check the tail.

Basic Arithmetic

is Used to evaluate arithmetic expressions.

X is Expression assigns the result of

Expression to X .

Note: The right-hand side must be fully

evaluable.

+, -, *,

/

Standard arithmetic operators.

mod Modulo operator (remainder of division).

X is 7 mod 2. (X will be 1)

Comparison Operators

=:= Arithmetic equality (values are equal).

=\= Arithmetic inequality (values are not equal).

<, >, =

<, >=

Less than, greater than, less than or equal to,

greater than or equal to.

Example: Factorial

factorial(0, 1). % Base case: factorial of 0

is 1.

factorial(N, F) :- % Recursive case:

 N > 0, % N must be greater than

0.

 N1 is N - 1, % Calculate N - 1.

 factorial(N1, F1), % Calculate factorial

of N - 1.

 F is N * F1. % F is N * factorial(N-

1).

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/358-prolog-cheat-sheet
http://cheatsheetshero.com/user/all/358-prolog-cheat-sheet
http://cheatsheetshero.com/user/all/358-prolog-cheat-sheet
https://cheatsheetshero.com/

Cut (`!`)

The cut (!) is a goal that always succeeds, but with a

side effect: it commits Prolog to the choices made so far

in the current rule.

It prevents backtracking.

Use with caution, as it can make programs harder to

understand and debug.

Negation as Failure

\+

Goal

Succeeds if Goal fails.

This is negation as failure: Prolog assumes

something is false if it cannot prove it to be

true.

Example:

different(a, b). would succeed, while

different(a, a). would fail.

different(X, Y) :- \+ X = Y.

Conditional Predicates

Prolog doesn’t have explicit if-then-else statements

like imperative languages.

Instead, conditional logic is achieved through multiple

rules and the use of cuts.

Example:

If X >= Y , the first rule succeeds (and the cut prevents

backtracking to the second rule). Otherwise, the second

rule is tried.

max(X, Y, X) :- X >= Y, !.

max(X, Y, Y) :- Y > X.

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

