
Lisp Programming Cheatsheet
A concise reference for Lisp programming, covering syntax, data structures, functions, macros, and common operations. Useful for both beginners

and experienced Lispers.

Basic Syntax & Data Types

Functions and Control Flow

Syntax Fundamentals

Lisp syntax is based on s-expressions (symbolic

expressions).

Everything is either an atom or a list.

(operator operand1 operand2 ...) -

Function application. The first element is the

function, and the rest are its arguments.

Parentheses are crucial. They define the structure

and order of operations.

Comments start with a semicolon ; and

continue to the end of the line.

Basic Data Types

Numbers: Integers (e.g., 1 , -42), floating-

point numbers (e.g., 3.14 ,

-2.71).

Symbols: Represent variables, function

names, etc. (e.g., x , my-

variable). Case-insensitive by

default (implementation

dependent).

Strings: Sequences of characters enclosed

in double quotes (e.g., "hello

world").

Characters: Represented differently depending

on the Lisp dialect. (e.g., #\A in

Common Lisp).

Booleans: t (true) and nil (false). Note:

nil also represents the empty

list.

Lists: Ordered collections of elements

enclosed in parentheses (e.g., (1

2 3) , (a b c)).

Lists and Cons Cells

Lists are built from cons cells. A cons cell holds

two pointers: car (first) and cdr (rest).

cons - Constructs a new cons cell.

(cons 'a 'b) ; => (a . b)

car - Returns the first element of a list.

(car '(a b c)) ; => a

cdr - Returns the rest of the list (excluding the

first element).

(cdr '(a b c)) ; => (b c)

Defining Functions

(defun function-name (parameter1

parameter2 ...) body) - Defines a new

function.

Example:

(defun square (x) (* x x))

(square 5) ; => 25

Parameters are symbols that receive the

argument values when the function is called.

Page 1 of 3 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/357-lisp-programming-cheatsheet
http://cheatsheetshero.com/user/all/357-lisp-programming-cheatsheet
http://cheatsheetshero.com/user/all/357-lisp-programming-cheatsheet
https://cheatsheetshero.com/

Variables and Scope

Control Flow

if (if condition then-clause

else-clause)

Evaluates condition . If true,

executes then-clause ;

otherwise, executes else-

clause .

(if (> x 0) "positive" "non-

positive")

cond (cond (condition1 clause1)

(condition2 clause2) ... (t

else-clause))

A multi-way conditional. Evaluates

conditions in order until one is true,

then executes the corresponding

clause.

(cond ((> x 0) "positive")

 ((< x 0) "negative")

 (t "zero"))

case A conditional that compares a key

against multiple values.

(case x

 (1 "one")

 (2 "two")

 (otherwise "something

else"))

loop

(Common

Lisp)

Powerful iteration construct with

many clauses for different looping

behaviors. Too complex to

summarize here, but essential for

serious Lisp programming.

Lambda Functions

(lambda (parameters) body) - Creates an

anonymous function.

((lambda (x) (* x x)) 5) ; => 25

Lambda functions are often used as arguments to

other functions (higher-order functions).

funcall - Applies a function to arguments.

(funcall #'+ 1 2) ; => 3

apply - Applies a function to a list of

arguments.

(apply #'+ '(1 2)) ; => 3

Variable Binding

let - Introduces local variable bindings.

(let ((variable1 value1) (variable2

value2) ...) body)

(let ((x 10) (y 20))

 (+ x y))

; => 30

let* - Similar to let , but bindings are

evaluated sequentially, allowing later bindings to

depend on earlier ones.

(let* ((x 10)

 (y (+ x 5)))

 (* x y))

; => 150

setf - Assigns a value to a variable or a place.

(setf variable value)

(setf x 5)

x ; => 5

Scope

Lisp typically uses lexical (static) scoping.

Variables are visible within the block they are

defined and any nested blocks, unless shadowed

by a new binding.

Global variables can be defined using defvar or

defparameter (Common Lisp). defparameter

is typically used for variables that you expect to

change during program execution.

(defvar *global-variable* 10)

(defparameter *pi* 3.14159)

Page 2 of 3 https://cheatsheetshero.com

https://cheatsheetshero.com/

Macros

Data Structures

Arrays Arrays can be created using make-

array (Common Lisp). Access

elements with aref .

(setf my-array (make-array

'(3) :initial-contents '(1 2

3)))

(aref my-array 0) ; => 1

Hash

Tables

Hash tables store key-value pairs.

Created with make-hash-table .

Access with gethash and set with

setf (gethash key hash-table)

value .

(setf my-hash (make-hash-

table))

(setf (gethash 'name my-hash)

"Lisp")

(gethash 'name my-hash) ; =>

"Lisp"

Structures User-defined data types with

named slots. Defined using

defstruct (Common Lisp).

(defstruct person name age)

(setf p (make-person :name

"Alice" :age 30))

(person-name p) ; => "Alice"

Macro Definition

defmacro - Defines a macro.

(defmacro macro-name (parameters) body)

Macros are code that write code. They are

expanded at compile time.

Example:

This macro defines a short-circuiting ‘or’ operator.

(my-or (print "x") (print "y")) will only

print “x” if x is not nil.

(defmacro my-or (x y)

 `(let ((temp ,x))

 (if temp temp ,y)))

Quoting and Unquoting

' (quote) Prevents evaluation. Returns the

expression literally.

'(+ 1 2) ; => (+ 1 2)

``

(backquote)`

Similar to quote , but allows

selective evaluation using ,

(comma).

(let ((x 10))

 `(the value of x is ,x))

; => (the value of x is 10)

, (comma) Inside a backquote, evaluates the

expression and splices the result.

(let ((numbers '(1 2 3)))

 `(the numbers are

,@numbers))

; => (the numbers are 1 2

3)

,@ Used inside a backquote to splice

a list into the surrounding list.

(let ((numbers '(1 2 3)))

 `(numbers: ,@numbers))

; => (numbers: 1 2 3)

Macro Expansion

macroexpand - Shows the expanded form of a

macro.

(macroexpand '(my-or (print "x") (print

"y")))

; => (LET ((TEMP (PRINT "x")))

; (IF TEMP TEMP (PRINT "y")))

Understanding macro expansion is crucial for

debugging and understanding macro behavior.

Page 3 of 3 https://cheatsheetshero.com

https://cheatsheetshero.com/

