
Erlang Cheatsheet
A quick reference guide to the Erlang programming language, covering syntax, data types, concurrency, and OTP principles.

Erlang Basics

Concurrency

OTP Principles

Common Built-in Functions (BIFs)

Syntax Fundamentals

Variable

Assignment

Erlang uses single assignment. Variables start with an uppercase

letter.

X = 10.

Atoms Atoms are literal constants, starting with a lowercase letter.

status = ok.

Comments Single-line comments start with % .

% This is a comment

Tuples Tuples are compound data types.

Point = {10, 20}.

Lists Lists are dynamic arrays.

Numbers = [1, 2, 3].

Strings Strings are lists of character codes.

Name = "Erlang".

Basic Operators

Arithmetic + , - , * , / , div , rem

Comparison == , /= , < , > , =< , =>

Boolean and , or , xor , not

List Operators ++ , -- (append and subtract lists)

Processes

Spawning Processes Use spawn to create a new process.

spawn(Module, Function, Args).

Sending Messages Use ! to send messages to a process.

ReceiverPid ! {self(), Message}.

Receiving Messages Use receive to handle incoming messages.

receive

 {Sender, Message} ->

 io:format("Received ~p from ~p~n", [Message,

Sender])

end.

Process Identifiers

(PIDs)

Returned by spawn , used to identify processes.

Message Handling

Messages are the primary means of communication between Erlang processes. They are

asynchronous and can be any Erlang term.

The receive block selectively receives messages based on pattern matching. Messages

that don’t match remain in the mailbox.

Use after to specify a timeout for the receive block.

receive

 Message ->

 ...

after 5000 ->

 io:format("Timeout~n")

end.

Supervisors

Supervisors are processes that monitor and restart other

processes (children) in case of failure. They ensure the

system’s fault tolerance.

Common supervision strategies include one_for_one ,

rest_for_one , and one_for_all .

Example:

{simple_one_for_one, {local, my_supervisor},

 [{my_worker, {my_worker, start_link, []},

permanent, brutal_kill, worker,

[my_worker]}]}.

Behaviours

gen_serve

r

Generic server behaviour for stateful

processes.

gen_state

m

Generic state machine behaviour.

gen_even

t

Generic event handler behaviour.

superviso

r

Behaviour for creating supervisor

processes.

Applications

Applications are a collection of modules, processes, and

other resources that form a reusable component. They

provide a way to package and manage Erlang code.

An application resource file (.app) defines the

application’s metadata, such as its name, description, and

dependencies.

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/350-erlang-cheatsheet
http://cheatsheetshero.com/user/all/350-erlang-cheatsheet
http://cheatsheetshero.com/user/all/350-erlang-cheatsheet
https://cheatsheetshero.com/

Process Related

self() Returns the PID of the current

process.

spawn(Module,

Function, Args)

Spawns a new process.

exit(Reason) Terminates the current process

with the given reason.

erlang:monitor(p

rocess, Pid)

Sets up a monitor for the

specified process.

Data Type Conversion

list_to_atom(List) Converts a list to an atom.

atom_to_list(Atom) Converts an atom to a list.

list_to_integer(List) Converts a list to an

integer.

integer_to_list(Integer

)

Converts an integer to a

list.

I/O

io:format(Format,

Args)

Prints formatted output.

file:read_file(Filename

)

Reads the contents of a

file.

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

