
Clojure Cheatsheet
A concise reference for Clojure syntax, data structures, functions, and macros, designed to help you quickly recall key elements of the language.

Core Data Structures

Functions and Macros

Control Flow

Sequences and Collections

Basic Data Types

nil Represents null or the absence of a value.

boole

an

true or false

numbe

r

Integers, floats, ratios. Example: 1 , 1.0 ,

1/2

strin

g

Immutable sequence of characters. Example:

"Hello, Clojure!"

keywo

rd

Interned strings, used as keys in maps.

Example: :name

symbo

l

Represents variables or function names.

Example: my-variable

Collections

lis

t

Ordered collection. Created with '(1 2 3) .

Implemented as a singly linked list.

vec

tor

Indexed collection. Created with [1 2 3] .

Supports efficient random access.

ma

p

Key-value pairs. Created with { :a 1, :b 2 } .

Keys and values can be any type.

se

t

Collection of unique values. Created with #{ 1 2

3 } .

que

ue

A sequence supporting FIFO semantics. Created

with clojure.lang.PersistentQueue/EMPTY

and conj and pop .

Atoms

Atoms provide a mutable reference to an immutable

value.

(def my-atom (atom 0))

(swap! my-atom inc) ; Increment the value

@my-atom ; Dereference to get the current

value

Function Definition

Functions are defined using defn .

(defn my-function [arg1 arg2]

 (+ arg1 arg2))

Anonymous functions can be created with fn or the

reader macro #() .

(fn [x] (* x x))

#(* % %)

Basic Functions

(+ x y) Addition

(- x y) Subtraction

(* x y) Multiplication

(quot x y) Integer division

(rem x y) Remainder

(inc x) Increment

(dec x) Decrement

Macros

Macros are code transformations performed at compile

time. Defined with defmacro .

(defmacro my-macro [arg]

 `(println ~arg))

(my-macro "Hello") ; expands to (println

"Hello")

Conditionals

if (if condition then else)

whe

n

(when condition & body) - executes body if

condition is true.

when

-not

(when-not condition & body) - executes

body if condition is false.

con

d

(cond condition1 expr1 condition2 expr2

...) - multi-branch conditional.

cas

e

(case expr clause1 expr1 clause2 expr2

...) - conditional based on the value of an

expression.

Looping and Iteration

loo

p

(loop [bindings...] & body) - defines a

recursive loop with initial bindings.

rec

ur

(recur exprs...) - jumps back to the

beginning of the innermost loop with updated

bindings.

dos

eq

(doseq [seq-exprs...] & body) - iterates over

a sequence, executing the body for each element

(side effects only).

dot

ime

s

(dotimes [i n] & body) - executes the body

n times, with i bound to the current iteration

number.

fo

r

(for [seq-exprs...] & body) - list

comprehension, returns a lazy sequence of the

results of evaluating body for each element.

Exception Handling

try / catch / finally

(try

 (/ 1 0)

 (catch ArithmeticException e

 (println "Caught exception:", (.getMessage

e)))

 (finally

 (println "Finally block executed")))

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/349-clojure-cheatsheet
http://cheatsheetshero.com/user/all/349-clojure-cheatsheet
http://cheatsheetshero.com/user/all/349-clojure-cheatsheet
https://cheatsheetshero.com/

Sequence Operations

map (map f coll) - Applies function f to each element in coll , returning a

new sequence.

filt

er

(filter pred coll) - Returns a new sequence containing only the elements

of coll for which (pred element) is true.

redu

ce

(reduce f val coll) - Reduces coll using function f , starting with

initial value val .

tak

e

(take n coll) - Returns a new sequence containing the first n elements of

coll .

dro

p

(drop n coll) - Returns a new sequence without the first n elements of

coll .

firs

t

(first coll) - Returns the first element of coll .

res

t

(rest coll) - Returns a sequence without the first element of coll .

con

s

(cons x coll) - Adds x to the beginning of coll .

Collection Specific Functions

get (get map key) - Returns the value associated with key in map .

assoc (assoc map key val) - Returns a new map with key associated with

val .

disso

c

(dissoc map key) - Returns a new map without key .

conj (conj coll val) - Adds val to the collection. Behavior depends on

collection type.

count (count coll) - Returns the number of elements in coll .

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

