CHEAT Sł

Capacitors Cheat Sheet

A quick reference guide to capacitors, covering types, characteristics, applications, and common formulas. This cheat sheet is designed for engineers, students, and hobbyists working with electronics.

Capacitor Basics

Capacitance	Capacitor	Construction
Definition: Capacitance (C) is the ability of a component to store an electrical charge.	Basic Structure:	Two conductive dielectric materi
Unit: Farad (F) Formula: c = Q / V Where:	Dielectric:	The dielectric m and voltage ratir include ceramic, electrolytic solu
 C is the capacitance in Farads Q is the charge in Coulombs V is the voltage in Volts 	Lead Types:	Axial (leads on e on the same end
Typical Values: Ranging from picofarads (pF) to millifarads (mF).		
Energy Stored: The energy (E) stored in a capacitor is given by E = $0.5 * C * V^2$		

Capacitor Types

Ceramic Capacitors

Characteristics: Non-polarized, small size, low cost, good for high-frequency applications.
Applications: Decoupling, bypass, and filtering.
Types: Multilayer Ceramic Capacitors (MLCCs) are common.

Basic Structure:	Two conductive plates separated by a dielectric material.
Dielectric:	The dielectric material affects capacitance and voltage rating. Common materials include ceramic, plastic film, and electrolytic solutions.
Lead Types:	Axial (leads on either end) and radial (leads on the same end).

Key Parameters

Voltage Rating:	Maximum voltage that can be safely applied to the capacitor.
Tolerance:	The allowable deviation from the specified capacitance value (e.g., ±10%).
Temperature Coefficient:	Change in capacitance per degree Celsius (°C).
ESR (Equivalent Series Resistance):	Represents the internal resistance of the capacitor, affecting its performance in AC circuits.

Electrolytic Capacitors

Characteristics:	Polarized, high capacitance values, suitable for low-frequency applications.
Types:	Aluminum electrolytic and tantalum electrolytic.
Applications:	Power supply filtering, energy storage.
Polarity:	Must be connected with correct polarity to avoid damage.

Film Capacitors

Characteristics: Non-polarized, good stability, low ESR, various dielectric materials (e.g., polyester, polypropylene).	
Applications: Audio circuits, precision timing, high- frequency circuits.	
Types: Polyester film, polypropylene film, etc.	
Other Capacitor T	ypes
Supercapacitors (Ultracapacitors):	Very high capacitance, used for
	energy storage in applications like electric vehicles and backup power systems.

tuning circuits.

Capacitor Circuits

Series and Parallel Combinations

Series Capacitors:	Total capacitance is less than the smallest individual capacitance. 1/C_total = 1/C_1 + 1/C_2 + + 1/C_n
Parallel	Total capacitance is the sum of individual capacitances.
Capacitors:	$C_{total} = C_1 + C_2 + \ldots + C_n$

RC Circuits

Charging: The voltage across the capacitor increases
exponentially when charging through a resistor.

Discharging: The voltage across the capacitor decreases exponentially when discharging through a resistor.

Time Constant (τ): $\tau = R * C$ (in seconds), where R is the resistance in ohms and C is the capacitance in farads. Represents the time it takes for the capacitor to charge or discharge to approximately 63.2% of its final value.

Practical Considerations

Capacitive Reactance

Definition:	Opposition to AC current flow, similar to resistance but frequency- dependent.
Formula:	 X_C = 1 / (2 * π * f * C) Where: X_C is the capacitive reactance in ohms f is the frequency in Hertz C is the capacitance in Farads
Frequency Dependence:	Capacitive reactance decreases as frequency increases.

Applications

Filtering: Blocking DC signals while allowing AC signals to pass (or vice versa).
Coupling: Passing AC signals from one circuit to another while blocking DC bias.
Decoupling/Bypass: Providing a local energy source for ICs, reducing noise on power supply lines.
Timing Circuits: Using RC time constants for creating delays and setting frequencies in oscillators.

Reading Capacitor Values

Direct Marking:	Some capacitors have the capacitance value directly printed on them (e.g., 100nF, 4.7µF).
Code Systems:	Others use a code system (e.g., 104 = 10 x 10^4 pF = 100nF). Last digit is multiplier (power of 10) in pF.
Tolerance Codes:	Letters indicate tolerance (e.g., K = $\pm 10\%$, M = $\pm 20\%$).

Selecting the Right Capacitor

Considerations: Capacitance value, voltage rating, tolerance, temperature coefficient, ESR, size, and cost.

Application Specific: Choose capacitor type based on the specific application requirements (e.g., ceramic for high frequency, electrolytic for high capacitance).

Troubleshooting

Testing:	Use a multimeter with capacitance measurement or an LCR meter to test capacitor values.
Common Failures:	Short circuits, open circuits, decreased capacitance, increased ESR.
Visual Inspection:	Check for bulging, leakage, or physical damage, especially in electrolytic capacitors.

Safety Precautions

Discharge: Always discharge capacitors before handling,
especially high-voltage capacitors, to avoid electric
shock.

Polarity: Ensure correct polarity when using polarized capacitors.

Voltage Rating: Never exceed the rated voltage of a capacitor.