
Software Engineering Principles Cheatsheet
A quick reference guide covering fundamental software engineering principles, methodologies, and best practices. This cheat sheet is designed to

help software engineers at all levels in designing, developing, and maintaining high-quality software.

Core Principles

Design Patterns

SOLID Principles

S - Single Responsibility Principle (SRP):

A class should have only one reason to change.

Example:

Instead of a class handling both database connections

and business logic, separate these into distinct classes.

O - Open/Closed Principle (OCP):

Software entities should be open for extension, but

closed for modification.

Example:

Use inheritance or composition to add new functionality

without altering existing code.

L - Liskov Substitution Principle (LSP):

Subtypes must be substitutable for their base types

without altering the correctness of the program.

Example:

If a function takes an object of type ‘Animal’, it should also

work correctly with objects of type ‘Dog’ or ‘Cat’.

I - Interface Segregation Principle (ISP):

Clients should not be forced to depend on methods they

do not use.

Example:

Instead of one large interface, create multiple smaller

interfaces specific to client needs.

D - Dependency Inversion Principle (DIP):

Depend upon abstractions, not concretions. High-level

modules should not depend on low-level modules. Both

should depend on abstractions.

Example:

Use dependency injection to inject dependencies into

classes rather than creating dependencies within the

class.

DRY Principle

Don’t Repeat Yourself (DRY):

Avoid duplication of code and logic.

Benefits:

Improved maintainability

Reduced risk of errors

Easier refactoring

Example:

Create a reusable function or class instead of copying and

pasting code.

KISS Principle

Keep It Simple, Stupid (KISS):

Design systems to be as simple as possible.

Benefits:

Easier to understand

Easier to maintain

Reduced complexity

Example:

Avoid over-engineering a solution when a simpler solution

is sufficient.

YAGNI Principle

You Ain’t Gonna Need It (YAGNI):

Avoid adding functionality until deemed necessary.

Benefits:

Reduced complexity

Faster development

Avoidance of unnecessary code

Example:

Do not implement a feature ‘just in case’ it might be

needed in the future.

Creational Patterns

Singleton Ensures only one instance of a class is

created and provides a global point of

access to it.

Factory

Method

Defines an interface for creating an object,

but lets subclasses alter the type of

objects that will be created.

Abstract

Factory

Provides an interface for creating families

of related or dependent objects without

specifying their concrete classes.

Builder Separates the construction of a complex

object from its representation, allowing the

same construction process to create

different representations.

Prototype Specifies the kinds of objects to create

using a prototypical instance, and create

new objects by copying this prototype.

Page 1 of 3 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/170-software-engineering-principles-cheatsheet
http://cheatsheetshero.com/user/all/170-software-engineering-principles-cheatsheet
http://cheatsheetshero.com/user/all/170-software-engineering-principles-cheatsheet
https://cheatsheetshero.com/


Software Development Methodologies

Structural Patterns

Adapter Allows incompatible interfaces to work

together. Converts the interface of a class

into another interface clients expect.

Bridge Decouples an abstraction from its

implementation so that the two can vary

independently.

Composite Composes objects into tree structures to

represent part-whole hierarchies.

Composite lets clients treat individual

objects and compositions uniformly.

Decorator Dynamically adds responsibilities to an

object. Decorators provide a flexible

alternative to subclassing for extending

functionality.

Facade Provides a unified interface to a set of

interfaces in a subsystem. Facade defines a

higher-level interface that makes the

subsystem easier to use.

Flyweight Uses sharing to support large numbers of

fine-grained objects efficiently.

Proxy Provides a surrogate or placeholder for

another object to control access to it.

Behavioral Patterns

Chain of

Responsibility

Avoids coupling the sender of a request

to its receiver by giving more than one

object a chance to handle the request.

Chain the receiving objects and pass

the request along the chain until an

object handles it.

Command Encapsulates a request as an object,

thereby letting you parameterize

clients with different requests, queue

or log requests, and support undoable

operations.

Interpreter Given a language, define a

representation for its grammar along

with an interpreter that uses the

representation to interpret sentences

in the language.

Iterator Provides a way to access the elements

of an aggregate object sequentially

without exposing its underlying

representation.

Mediator Defines an object that encapsulates

how a set of objects interact. Mediator

promotes loose coupling by keeping

objects from referring to each other

explicitly, and lets you vary their

interaction independently.

Memento Without violating encapsulation,

capture and externalize an object’s

internal state so that the object can be

restored to this state later.

Observer Defines a one-to-many dependency

between objects so that when one

object changes state, all its dependents

are notified and updated automatically.

State Allows an object to alter its behavior

when its internal state changes. The

object will appear to change its class.

Strategy Defines a family of algorithms,

encapsulates each one, and makes

them interchangeable. Strategy lets the

algorithm vary independently from

clients that use it.

Template

Method

Defines the skeleton of an algorithm in

an operation, deferring some steps to

subclasses. Template Method lets

subclasses redefine certain steps of an

algorithm without changing the

algorithm’s structure.

Visitor Represents an operation to be

performed on the elements of an

object structure. Visitor lets you define

a new operation without changing the

classes of the elements on which it

operates.

Page 2 of 3 https://cheatsheetshero.com

https://cheatsheetshero.com/


Code Quality and Testing

Agile Methodologies

Overview:

Agile methodologies emphasize iterative development,

collaboration, and flexibility to adapt to changing

requirements.

Key Principles:

Customer satisfaction through early and continuous

delivery

Welcoming changing requirements

Frequent delivery of working software

Close collaboration between business stakeholders

and developers

Self-organizing teams

Continuous attention to technical excellence

Popular Agile Frameworks:

Scrum

Kanban

Extreme Programming (XP)

Scrum

Overview:

An iterative and incremental framework for managing

complex projects.

Key Components:

Roles: Product Owner, Scrum Master, Development

Team

Events: Sprint Planning, Daily Scrum, Sprint Review,

Sprint Retrospective

Artifacts: Product Backlog, Sprint Backlog,

Increment

Kanban

Overview:

A visual system for managing workflow, limiting work in

progress (WIP), and improving flow.

Key Principles:

Visualize the workflow

Limit WIP

Manage flow

Make process policies explicit

Implement feedback loops

Improve collaboratively, evolve experimentally

Waterfall Methodology

Overview:

A sequential, linear approach to software development

where each phase must be completed before the next

phase can begin.

Phases:

1. Requirements

2. Design

3. Implementation

4. Verification

5. Maintenance

Limitations:

Inflexible to changes

Not suitable for complex or evolving projects

Code Quality Metrics

Cyclomatic

Complexity

Measures the number of linearly

independent paths through a

program’s source code. Lower values

indicate simpler, more testable code.

Code Coverage Measures the extent to which the

source code of a program has been

tested. Higher coverage generally

indicates better testing.

Maintainability

Index

Calculates an index value that

represents the relative ease of

maintaining the code. Higher values

are better.

Lines of Code

(LOC)

A simple measure of the size of a

program. Can indicate complexity and

effort required for maintenance.

Testing Types

Unit Testing Testing individual units or components

of a software application. Focuses on

verifying that each part of the system

works as expected.

Integration

Testing

Testing the interaction between

different units or components to ensure

they work together correctly.

System

Testing

Testing the entire system to ensure it

meets the specified requirements.

Conducted after integration testing.

Acceptance

Testing

Testing conducted by end-users or

stakeholders to determine whether the

system meets their needs and

expectations.

Test-Driven Development (TDD)

Overview:

A software development process in which tests are

written before the code. This helps ensure that the code

is testable and meets the specified requirements.

Steps:

1. Write a test

2. Run the test and see it fail

3. Write the minimal code to pass the test

4. Run all tests and ensure they pass

5. Refactor the code

Code Review Best Practices

Key Considerations:

Focus on code correctness, clarity, and

maintainability

Provide constructive feedback

Ensure code adheres to coding standards

Check for potential bugs and security vulnerabilities

Automate code reviews where possible

Page 3 of 3 https://cheatsheetshero.com

https://cheatsheetshero.com/

