

Chemical Engineering Cheatsheet

A comprehensive cheat sheet covering essential concepts and formulas in Chemical Engineering, useful for quick reference and exam preparation.

Thermodynamics

Fundamental Concepts

First Law of Thermodynamics	 ΔU = Q - W ΔU: Change in internal energy Q: Heat added to the system W: Work done by the system
Enthalpy (H)	H = U + PVU: Internal energyP: PressureV: Volume
Second Law of Thermodynamics	ΔS ≥ 0 (for a closed system) • ΔS: Change in entropy
Gibbs Free Energy (G)	 G = H - TS T: Temperature S: Entropy At constant T and P, ΔG < O for a spontaneous process.
Helmholtz Free Energy (A)	A = U - TS • At constant T and V, ΔA < O for a spontaneous process.
Heat Capacity	$C_V = (\partial U/\partial T)_V$ $C_P = (\partial H/\partial T)_P$

Equations of State

PV = nRT
P: Pressure
V: Volume
 n: Number of moles
 R: Ideal gas constant
T: Temperature
$(P + a(n/V)^2)(V - nb) = nRT$
a, b: Van der Waals constants
$P = (RT)/(V_m - b) - (a\alpha)/(V_m^2 + 2bV_m - b_2)$
 V_m: Molar volume
 a, b, α: Peng-Robinson parameters

Thermodynamic Cycles

Carnot	η = 1 - (Tc/Th)
Cycle	 η: Efficiency
	Tc: Cold reservoir temperature
	Th: Hot reservoir temperature
Rankine	Used in steam power plants. Includes pump,
Cycle	boiler, turbine, and condenser.

Fluid Mechanics

Fluid Properties

Density (ρ)	ρ = m/Vm: MassV: Volume
Viscosity (μ)	Measure of a fluid's resistance to flow.
Surface Tension (σ)	Energy required to increase the surface area of a liquid.

Fluid Statics

Pressure (P)	P = F/A • F: Force • A: Area
Hydrostatic Pressure	P = ρgh ρ: Density g: Acceleration due to gravity h: Height
Buoyancy	Archimedes' principle: Buoyant force equals the weight of the fluid displaced.

Fluid Dynamics

Continuity Equation	A1V1 = A2V2 (for incompressible fluids) • A: Cross-sectional area • V: Velocity
Bernoulli's Equation	P + (1/2)pV^2 + pgh = constant P: Pressure p: Density V: Velocity g: Acceleration due to gravity h: Height
Navier-Stokes Equations	Equations describing the motion of viscous fluid substances.
Reynolds Number (Re)	Re = (ρVD)/μ p: Density V: Velocity D: Diameter μ: Viscosity
Friction Factor (f)	Used to calculate pressure drop in pipes.

Mass Transfer

Page 1 of 2 https://cheatsheetshero.com

Fick's First Law	J = -D (dC/dx)	
	 J: Diffusion flux 	
	D: Diffusion coefficient	
	C: Concentration	
	• x: Distance	
Fick's Second Law	$\partial C/\partial t = D (\partial^{2C/\partial x} 2)$	
	C: Concentration	
	• t: Time	
	D: Diffusion coefficient	
	• x: Distance	

Relative Volatility (α)	 α = (yA/xA) / (yB/xB) yA, yB: Vapor mole fractions of components A and B xA, xB: Liquid mole fractions of components A and B
McCabe-Thiele Method	Graphical method for designing distillation columns.
Fenske Equation	N_min = log((xA,D/xB,D) * (xB,B/xA,B)) / log(α) • N_min: Minimum number of trays • xA,D, xB,D: mole fractions of A

and B in distillate

and B in bottoms

xA,B, xB,B: mole fractions of A

Stripping Factor (S)	S = (mG)/L	
	•	m: Slope of equilibrium line
	•	G: Gas flow rate
	•	L: Liquid flow rate

Mass Transfer Coefficient (k)

Relates the mass transfer rate to the concentration difference.

N = k∆C

- N: Mass transfer rate
- k: Mass transfer coefficient
- ullet ΔC : Concentration difference

Chemical Reaction Engineering

Reaction Kinetics

Rate Law	-rA = k CA^n	
	• -rA: Rate of disappearance of	
	reactant A	
	k: Rate constant	
	 CA: Concentration of A 	
	n: Order of reaction	
Arrhenius	k = A exp(-Ea/RT)	
Equation	k: Rate constant	
	A: Pre-exponential factor	
	Ea: Activation energy	
	R: Gas constant	
	T: Temperature	

Reactor Types

Batch Reactor	Closed system; reactants are mixed and allowed to react for a certain time.
Continuous Stirred- Tank Reactor (CSTR)	Continuous flow of reactants and products; perfectly mixed.
Plug Flow Reactor (PFR)	Continuous flow; no mixing in the axial direction.

Reactor Design Equations

CSTR Design	V = (FAO XA) / (-rA)
Equation	V: Reactor volume
	FA0: Molar flow rate of A at inlet
	XA: Conversion of A
	• -rA: Rate of disappearance of A
PFR Design	$V = \int (FAO dXA) / (-rA)$
Equation	V: Reactor volume
	FA0: Molar flow rate of A at inlet
	XA: Conversion of A
	• -rA: Rate of disappearance of A
	Integration is performed over the
	range of conversion.

https://cheatsheetshero.com Page 2 of 2