

# **Civil Engineering Cheatsheet**

A comprehensive cheat sheet covering essential concepts, formulas, and tables in civil engineering. Designed for quick reference for students and professionals.



# Structural Analysis & Design

### **Material Properties**

# Steel (A36) Fy = 36 ksi Fu = 58 ksi E = 29,000 ksi Concrete (f'c) f'c = Concrete compressive strength (ksi) E = 57000 \* sqrt(f'c) (psi) Wood Properties vary widely; refer to specific wood species tables.

### Load Combinations (ASCE 7)

| LRFD (Load and Resistance Factor Design) Load<br>Combinations:                                                                                                                                 |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1.4D<br>1.2D + 1.6L + 0.5(Lr or S or R)<br>1.2D + 1.6(Lr or S or R) + (L or 0.5W)<br>1.2D + 1.0W + L + 0.5(Lr or S or R)<br>1.2D + 1.0E + L + 0.2S<br>0.9D + 1.0W + 0.9H<br>0.9D + 1.0E + 0.9H |  |  |
| Where: D = Dead Load, L = Live Load, Lr = Roof Live Load, S =                                                                                                                                  |  |  |

Snow Load, R = Rain Load, W = Wind Load, E =

Earthquake Load, H = Soil Load

### Beam Deflection Formulas

| Cantilever Beam, End Load | delta = (P*L^3) /<br>(3*E*I) |
|---------------------------|------------------------------|
| Cantilever Beam, Uniform  | delta = (w*L^4) /            |
| Load                      | (8*E*I)                      |
| Simply Supported Beam,    | delta = (P*L^3) /            |
| Center Load               | (48*E*I)                     |
| Simply Supported Beam,    | delta = (5*w*L^4) /          |
| Uniform Load              | (384*E*I)                    |

# **Geotechnical Engineering**

### Soil Properties

| Unit Weight (y)          | y = W / V   |
|--------------------------|-------------|
| Dry Unit Weight (yd)     | yd = Ws / V |
| Void Ratio (e)           | e = Vv / Vs |
| Porosity (n)             | n = Vv / V  |
| Degree of Saturation (S) | S = Vw / Vv |
| Water Content (w)        | w = Ww / Ws |

### **Effective Stress**

| $\sigma' = \sigma - u$ |      |  |
|------------------------|------|--|
|                        |      |  |
|                        |      |  |
| Where:                 |      |  |
| σ' = Effective stress  |      |  |
| σ = Total stress       |      |  |
| u = Pore water pres    | sure |  |
|                        |      |  |
|                        |      |  |
|                        |      |  |
|                        |      |  |

### Bearing Capacity (Terzaghi)

| Strip Footing       | q_ult = cNc + yDfNq + 0.5yBNy                                                                                                         |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Square<br>Footing   | q_ult = 1.3cNc + yDfNq + 0.4yBNy                                                                                                      |
| Circular<br>Footing | q_ult = 1.3cNc + yDfNq + 0.3yBNy                                                                                                      |
| Where               | c = Cohesion  y = Unit weight of soil  Df = Depth of footing  B = Width or diameter of footing  Nc, Nq, Ny = Bearing capacity factors |

### **Transportation Engineering**

### **Highway Capacity**

| Density (D)          | D = v / s                                    |
|----------------------|----------------------------------------------|
|                      | where v = flow rate, s = space<br>mean speed |
| Flow Rate (v)        | v = D * s                                    |
| Space Mean Speed (s) | s = v / D                                    |

### Traffic Flow Relationships

### Stopping Sight Distance (SSD)

| SSD<br>Formula | SSD = $1.47*v*t + (v^2) / (30*(f +- g))$     |
|----------------|----------------------------------------------|
|                | Where:<br>v = speed (mph)                    |
|                | t = perception-reaction time (sec, typically |
|                | 2.5 sec)                                     |
|                | f = coefficient of friction                  |
|                | g = grade (+ for uphill, - for downhill)     |

### **Environmental Engineering**

Page 1 of 2 https://cheatsheetshero.com

# Water Quality Parameters

### **Activated Sludge Process**

# Air Quality

| BOD<br>(Biochemical<br>Oxygen Demand) | BOD = (DOI - DOf) / P  Where:  DOI = Initial dissolved oxygen  DOf = Final dissolved oxygen  P = Dilution factor                                 |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| COD (Chemical<br>Oxygen Demand)       | Measure of the oxygen equivalent of<br>the organic matter in a water sample<br>that is susceptible to oxidation by a<br>strong chemical oxidant. |
| рН                                    | Measure of acidity or alkalinity. pH = -log[H+]                                                                                                  |
| Turbidity                             | Measure of the cloudiness of water. Caused by suspended solids.                                                                                  |

| Sludge Volume Index (SVI):                                |  |
|-----------------------------------------------------------|--|
| SVI = (Settled Sludge Volume (mL/L) * 1000) / MLSS (mg/L) |  |
| Where:<br>MLSS = Mixed Liquor Suspended Solids            |  |

| PM10 &<br>PM2.5            | Particulate matter with aerodynamic diameter less than 10 μm and 2.5 μm, respectively.                   |
|----------------------------|----------------------------------------------------------------------------------------------------------|
| Ozone (O3)                 | Formed by photochemical reactions involving nitrogen oxides (NOx) and volatile organic compounds (VOCs). |
| Carbon<br>Monoxide<br>(CO) | A colorless, odorless toxic gas produced by incomplete combustion.                                       |

Page 2 of 2 https://cheatsheetshero.com