

Artificial Intelligence Cheat Sheet

A comprehensive cheat sheet covering essential Artificial Intelligence concepts, algorithms, and techniques. This guide is designed to provide a quick reference for AI practitioners and students.

Fundamentals of Al

Core Concepts		Al Agents		Search Algorithms	
Artificial Intelligence (AI)	The simulation of human intelligence processes by computer systems.	Definition	An entity that perceives its environment through sensors and acts upon that environment	Breadth- First Search (BFS)	Explores all the neighbor nodes at the present depth prior to moving on to the nodes at the next depth
Machine Learning (ML)	A subset of AI that allows systems to learn from data without being explicitly programmed.	Rationality	An agent is rational if it chooses actions that maximize its expected performance measure, given its percept sequence, built-in knowledge, and possible actions.		cost is 1.
				Depth-First Search	Explores as far as possible along each branch before backtracking.
Deep Learning (DL)	A subset of ML using artificial neural networks with multiple lavers to analyze data with			(DFS)	Not complete and not optimal.
				A Search*	An informed search algorithm, or a best-first search, meaning that it is formulated in terms of weighted graphs: starting from a specific starting node of a graph, it aims to find a path to the given goal node having the smallest cost. Complete and optimal if heuristic is admissible.
	complex structures.	Types of Agents	Simple reflex agents, model- based reflex agents, goal-based agents, and utility-based agents. Performance measure, Environment, Actuators, Sensors.		
SupervisedLeLearningprun	Learning from labeled data to predict outcomes on new, unseen data.				
		PEAS Description			
Unsupervised Learning	Learning from unlabeled data to discover patterns and relationships.				
		Example PEAS - Self- Driving Car	Performance: Safety, travel time, comfort, legal compliance. Environment: Roads, other traffic, pedestrians, weather conditions. Actuators: Steering, accelerator, brakes, signals. Sensors: Cameras, radar, GPS, speedometers.	Heuristic	Estimates the cost from the
Reinforcement Learning (RL)	Training an agent to make sequences of decisions in an environment to maximize a reward.			Function	current state to the goal state. Used in informed search algorithms like A*.
				Admissible Heuristic	A heuristic is admissible if it never overestimates the cost to reach the goal. h(n) <= h*(n)

Machine Learning Algorithms

Supervised Learning		Unsupervised Learning		Reinforcement Learning	
Linear Regression	Models the relationship between a dependent variable and one or more independent variables by fitting a linear equation to observed data. Formula: y = mx + b	K-Means Clustering	Partitions n observations into k clusters, in which each observation belongs to the cluster with the nearest mean (cluster centers or cluster centroid), serving as a prototype of the cluster	Q- Learning	A model-free reinforcement learning algorithm to learn a policy telling an agent what action to take under what circumstances. It learns an optimal policy even when the agent is following a sub-optimal policy. Formula: Q(s, a) = Q(s, a) + \alpha [R(s, a) + \gamma \max_{a'}} Q(s', a') - Q(s, a)]
Logistic Regression	A statistical model that uses a logistic function to model a binary dependent variable. Used for classification problems. Formula: p = \frac{1}{1 + e^{-z}} where z = mx + b	Hierarchical Clustering	Builds a hierarchy of clusters by iteratively merging or splitting them. Can be agglomerative (bottom-up) or divisive (top- down).		
				SARSA	On-policy algorithm that updates the Q-value based on the action the agent actually takes. Stands for
Support Vector Machines (SVM)	Finds the optimal hyperplane that maximizes the margin between different classes in the data. Kernel functions can be used for	Principal Component Analysis (PCA)	A statistical procedure that uses an orthogonal transformation to convert a set of observations of possibly correlated variables into a set of values of linearly uncorrelated variables called principal components. Used for dimensionality reduction.	Policy	State-Action-Reward-State-Action.
				Gradient Methods	using a value function. Example: REINFORCE.
Decision	non-linear data.			Markov Decision Process (MDP)	A mathematical framework for modeling decision-making in situations where outcomes are partly random and partly under the control of a decision maker. Defines: States, Actions, Transition probabilities, Rewards.
Trees	decisions based on features of the data. Easy to interpret, but				
	prone to overfitting.	Association	Discovers interesting relations between variables in large databases. Example: Market Basket Analysis (Apriori algorithm).		
Random Forest	An ensemble learning method that operates by constructing a multitude of decision trees at training time and outputting the class that is the mode of the classes (classification) or mean prediction (regression) of the individual trees. Reduces overfitting.	Rule Learning			
K-Nearest	Classifies a data point based on				

Neighbors

(KNN)

the majority class of its k nearest

neighbors. Simple but computationally expensive for

large datasets.

Neural Networks and Deep Learning

Basic Neural Network

Perceptron	The basic unit of a neural network that takes several inputs, weighs them, sums them up, and passes the result through an activation function to produce an	Convolutional Layer	Applies a filter (kernel) to the input to produce a feature map. Used for feature extraction.	Recurrent Layer	Processes sequential data by maintaining a hidden state that captures information about the
		Pooling Layer	Reduces the spatial size of the feature maps, reducing the number of parameters and		past. The output of the hidden state is fed back into the network.
Activation Functions	Functions that introduce non-linearity to the output of a neuron. Examples: Sigmoid, ReLU, Tanh. Sigmoid: \sigma(x) = \frac{1}{1 + e^{x}}		computational complexity. Examples: Max Pooling, Average Pooling.	Long Short- Term Memory (LSTM)	A type of RNN architecture that addresses the vanishing gradient problem by using memory cells and gates to control the flow of information. Good for remembering long term dependencies
		ReLU Layer	Applies the ReLU activation function to introduce non- linearity.		
Feedforward Neural Network	ReLU: $f(x) = \langle max(0, x) \rangle$ A neural network where the connections between the nodes do not form a cycle. Information flows in one direction, from the input layer to the output layer.	Fully Connected Layer	Connects every neuron in one layer to every neuron in the next layer. Used for classification.	Gated Recurrent Unit (GRU)	A simplified version of LSTM with fewer parameters, making it faster to train. Also effective at capturing long-term dependencies.
		Common	LeNet, AlexNet, VGGNet,		
		Architectures	ResNet, Inception.	Applications	Natural Language Processing (NLP), speech recognition, time
Backpropagation	An algorithm used to train feedforward neural networks by calculating the gradient of the loss function with respect to the weights and biases, and updating them accordingly.				series analysis.
Loss Function	A function that quantifies the error between the predicted output and the				

Convolutional Neural Networks (CNNs)

AI Ethics and Future Trends

Ethical Considerations

Bias - AI systems can perpetuate and amplify biases present in the data they are trained on, leading to unfair or discriminatory outcomes.

Transparency - Lack of transparency in AI models can make it difficult to understand how decisions are made, hindering accountability.

actual output. Examples: Mean Squared Error (MSE),

Cross-Entropy.

Privacy - AI systems can collect and process large amounts of personal data, raising concerns about privacy and data security.

Job Displacement - Automation driven by AI can lead to job losses in certain sectors.

Fairness - Ensuring that AI systems do not discriminate against individuals or groups based on protected characteristics.

Accountability - Establishing mechanisms to hold individuals and

organizations accountable for the decisions made by AI systems.

Explainability - Developing AI models that are transparent and whose decisions can be easily understood and explained.

Safety - Ensuring that AI systems are safe and do not pose a risk to human health or well-being.

Future Trends

Explainable Al (XAI)	Developing AI models that are transparent and whose decisions can be easily understood and explained.
Federated Learning	Training machine learning models on decentralized data located on user devices or in data centers, without exchanging the data itself.
Generative AI	Al models that can generate new data instances that resemble the training data. Examples: Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs).
Quantum Machine Learning	Combining quantum computing and machine learning to solve complex problems that are intractable for classical computers.
Edge Al	Running AI algorithms on edge devices, such as smartphones and IoT devices, to enable real-time processing and reduce latency.

Recurrent Neural Networks (RNNs)