
Database Systems Cheatsheet
A comprehensive cheat sheet covering essential concepts in database systems, including data modeling, SQL, normalization, transactions, and

indexing.

Data Modeling

SQL Fundamentals

Entity-Relationship (ER) Model

Entity: A real-world object distinguishable from other

objects.

Example: Customer, Product, Order

Attribute: A property describing an entity.

Example: Customer ID, Product Name, Order Date

Relationship: An association among entities.

Example: Customer places Order, Product is part of Order

Cardinality: Specifies the number of instances of one

entity that can be related to another entity.

Types: One-to-one (1:1), One-to-many (1:N), Many-to-one

(N:1), Many-to-many (N:M)

Primary Key: A unique identifier for an entity.

Example: Customer ID in Customer entity

Foreign Key: An attribute in one entity that refers to the

primary key of another entity, establishing a link between

them.

Example: Customer ID in Order entity referencing

Customer entity

Enhanced Entity-Relationship (EER) Model

Specialization: Creating subtypes (child entities) from

a supertype (parent entity).

Example: Employee (supertype) can be

specialized into Salaried_Employee and

Hourly_Employee (subtypes).

Generalization: Creating a supertype from subtypes.

Example: Combining Car and Truck into

Vehicle (supertype).

Aggregation: Treating a relationship as an entity.

Example: Project entity consisting of

Worker entity and Task entity.

Inheritance: Subtypes inherit attributes and

relationships from their supertype.

Example: Salaried_Employee inherits

attributes like Employee ID and Name

from Employee.

UML Class Diagrams

Class: Represents a set of objects with common

attributes and behavior.

Example: Customer class with attributes CustomerID ,

Name , Address .

Association: Represents a relationship between classes.

Example: Customer places Order .

Multiplicity: Specifies the cardinality of the association.

Example: One Customer can place many Order s (1..*).

Aggregation/Composition: Represents a part-whole

relationship.

Example: Order consists of OrderItem s (composition

if OrderItem cannot exist without Order).

Basic Queries

SELECT

statement:

Retrieves data from a database.

Example:

SELECT column1, column2 FROM

table_name;

WHERE clause: Filters the results based on a

condition.

Example:

SELECT * FROM Customers WHERE

Country = 'USA';

ORDER BY

clause:

Sorts the results.

Example:

SELECT * FROM Products ORDER

BY Price DESC;

LIMIT clause: Limits the number of rows returned.

Example:

SELECT * FROM Employees LIMIT

10;

DISTINCT

keyword:

Retrieves unique values.

Example:

SELECT DISTINCT Country FROM

Customers;

Page 1 of 3 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/159-database-systems-cheatsheet
http://cheatsheetshero.com/user/all/159-database-systems-cheatsheet
http://cheatsheetshero.com/user/all/159-database-systems-cheatsheet
https://cheatsheetshero.com/

Normalization

Joins

INNER

JOIN :

Returns rows when there is a match in

both tables.

Example:

SELECT Orders.OrderID,

Customers.CustomerName

FROM Orders

INNER JOIN Customers ON

Orders.CustomerID =

Customers.CustomerID;

LEFT JOIN

(or LEFT

OUTER

JOIN):

Returns all rows from the left table, and

the matched rows from the right table. If

there is no match, the result is NULL on

the right side.

Example:

SELECT Customers.CustomerName,

Orders.OrderID

FROM Customers

LEFT JOIN Orders ON

Customers.CustomerID =

Orders.CustomerID;

RIGHT

JOIN (or

RIGHT

OUTER

JOIN):

Returns all rows from the right table, and

the matched rows from the left table. If

there is no match, the result is NULL on

the left side.

Example:

SELECT Customers.CustomerName,

Orders.OrderID

FROM Customers

RIGHT JOIN Orders ON

Customers.CustomerID =

Orders.CustomerID;

FULL OUTER

JOIN :

Returns all rows when there is a match in

one of the tables.

Example:

SELECT Customers.CustomerName,

Orders.OrderID

FROM Customers

FULL OUTER JOIN Orders ON

Customers.CustomerID =

Orders.CustomerID;

Aggregate Functions

COUNT() - Returns the number of rows.

Example:

SELECT COUNT(*) FROM Orders;

SUM() - Returns the sum of values.

Example:

SELECT SUM(Price) FROM Products;

AVG() - Returns the average value.

Example:

SELECT AVG(Price) FROM Products;

MIN() - Returns the minimum value.

Example:

SELECT MIN(Price) FROM Products;

MAX() - Returns the maximum value.

Example:

SELECT MAX(Price) FROM Products;

Normal Forms

1NF (First Normal Form):

Eliminate repeating groups of data.

Each column should contain only atomic values.

2NF (Second Normal Form):

Must be in 1NF and eliminate redundant data.

No non-key attribute should be dependent on a proper subset of any candidate key.

3NF (Third Normal Form):

Must be in 2NF and eliminate transitive dependencies.

No non-key attribute should be transitively dependent on the primary key.

BCNF (Boyce-Codd Normal Form):

A stronger version of 3NF.

Every determinant must be a candidate key.

4NF (Fourth Normal Form):

Must be in BCNF and eliminate multi-valued dependencies.

5NF (Fifth Normal Form):

Must be in 4NF and eliminate join dependencies.

Page 2 of 3 https://cheatsheetshero.com

https://cheatsheetshero.com/

Transactions and Indexing

Example of Normalization

Consider a table Orders with columns: OrderID , CustomerID , CustomerName ,

CustomerAddress , ProductID , ProductName , ProductPrice .

Unnormalized:

OrderID | CustomerID | CustomerName | CustomerAddress | ProductID |

ProductName | ProductPrice

--------|------------|--------------|-----------------|-----------|-------

------|------------

1 | 101 | John Doe | 123 Main St | 1 | Laptop

| 1200

1 | 101 | John Doe | 123 Main St | 2 | Mouse

| 25

1NF:

Remove repeating groups by creating separate rows for each product.

OrderID | CustomerID | CustomerName | CustomerAddress | ProductID |

ProductName | ProductPrice

--------|------------|--------------|-----------------|-----------|-------

------|------------

1 | 101 | John Doe | 123 Main St | 1 | Laptop

| 1200

1 | 101 | John Doe | 123 Main St | 2 | Mouse

| 25

2NF:

Create separate tables for Customers , Products , and Orders to eliminate redundant

data.

Tables:

Customers : CustomerID , CustomerName , CustomerAddress

Products : ProductID , ProductName , ProductPrice

Orders : OrderID , CustomerID , ProductID

Transaction Properties (ACID)

Atomicity: All operations in a transaction must be treated

as a single “unit”. Either all operations succeed, or none

do.

Example: Transferring money from one account to

another involves debiting one account and crediting

another. Both must succeed or fail together.

Consistency: A transaction must maintain the integrity of

the database. Moving from one valid state to another.

Example: A transaction should not violate any defined

constraints (e.g., primary key, foreign key).

Isolation: Transactions should be isolated from each

other. Concurrent execution should have the same result

as if transactions were executed serially.

Example: Two transactions updating the same data

should not interfere with each other.

Durability: Once a transaction is committed, the changes

are permanent and will survive system failures.

Example: After a successful money transfer, the changes

should not be lost even if the system crashes immediately

afterward.

Transaction Management

START

TRANSACTION

:

Begins a new transaction.

Example:

START TRANSACTION;

COMMIT : Saves the changes made during the

transaction.

Example:

COMMIT;

ROLLBACK : Undoes the changes made during the

transaction.

Example:

ROLLBACK;

SAVEPOINT : Creates a point within a transaction to

which you can rollback.

Example:

SAVEPOINT my_savepoint;

RELEASE

SAVEPOINT :

Removes a previously defined savepoint.

Example:

RELEASE SAVEPOINT my_savepoint;

Indexing

Purpose:

Indexes improve the speed of data retrieval operations on

a database table.

Types:

B-tree index: Most common type, efficient for range

queries and equality lookups.

Hash index: Fast for equality lookups but not

suitable for range queries.

Full-text index: Used for searching text data.

Creating an Index:

CREATE INDEX index_name ON table_name

(column1, column2, ...);

Example:

CREATE INDEX idx_customer_name ON Customers

(CustomerName);

Considerations:

Indexes can slow down write operations (INSERT,

UPDATE, DELETE) because the index also needs to be

updated. Choose indexes wisely based on the most

frequent queries.

Page 3 of 3 https://cheatsheetshero.com

https://cheatsheetshero.com/

