
Algorithms Cheat Sheet
A quick reference guide to common algorithms and data structures in computer science, covering time complexity, pseudocode, and applications.

Sorting Algorithms

Searching Algorithms

Graph Algorithms

Comparison Sorts

Bubble

Sort

Repeatedly steps through the list, compares adjacent elements and swaps

them if they are in the wrong order.

Time Complexity: O(n^2)

Insertion

Sort

Builds the final sorted array (or list) one item at a time. It is much less

efficient on large lists than more advanced algorithms.

Time Complexity: O(n^2)

Selection

Sort

Divides the input list into two parts: a sorted sublist of items which is built

up from left to right at the front (left) of the list and a sublist of the

remaining unsorted items that occupy the rest of the list.

Time Complexity: O(n^2)

Merge

Sort

A divide and conquer algorithm that divides the input array into two halves,

calls itself for the two halves, and then merges the two sorted halves.

Time Complexity: O(n log n)

Quick Sort A divide and conquer algorithm that picks an element as pivot and

partitions the given array around the picked pivot.

Time Complexity: O(n log n) average, O(n^2) worst case

Heap Sort Heap sort involves building a Heap data structure from the array and then

repeatedly extracting the maximum element from the Heap and placing it

at the end of the array.

Time Complexity: O(n log n)

Non-Comparison Sorts

Counting

Sort

Works by counting the number of occurrences of each distinct element in

the input array.

Time Complexity: O(n + k), where k is the range of input

Radix Sort Sorts elements by processing individual digits. It groups elements by the

digit in the same position and repeats until all digits have been processed.

Time Complexity: O(nk), where k is the number of digits

Bucket

Sort

Distributes the elements of an array into a number of buckets. Each bucket

is then sorted individually, either using a different sorting algorithm, or by

recursively applying the bucket sorting algorithm.

Time Complexity: O(n + k) average, O(n^2) worst case

Basic Search Algorithms

Linear Search Sequentially checks each element of the list until a match is found or the whole list has been searched.

Time Complexity: O(n)

Binary Search Searches a sorted array by repeatedly dividing the search interval in half. Requires the input data to be sorted.

Time Complexity: O(log n)

Jump Search Like binary search, but jumps ahead by fixed steps. The optimal size of a block to be jumped is (\sqrt{n}).

Time Complexity: O((\sqrt{n}))

Interpolation Search An improvement over binary search for uniformly distributed data. It estimates the position of the required value.

Time Complexity: O(log log n) average, O(n) worst case

Basic Graph Traversal

Breadth-

First Search

(BFS)

Traverses a graph level by level. Starts at

the root node and explores all the

neighbor nodes at the present depth prior

to moving on to the nodes at the next

depth level.

Time Complexity: O(V + E), where V is the

number of vertices and E is the number of

edges.

Depth-First

Search

(DFS)

Explores as far as possible along each

branch before backtracking. It uses a stack

to remember where to go when it reaches

a dead end.

Time Complexity: O(V + E)

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/156-algorithms-cheat-sheet
http://cheatsheetshero.com/user/all/156-algorithms-cheat-sheet
http://cheatsheetshero.com/user/all/156-algorithms-cheat-sheet
https://cheatsheetshero.com/


Dynamic Programming

Shortest Path Algorithms

Dijkstra’s

Algorithm

An algorithm for finding the shortest paths

between nodes in a graph. For a given

source node in the graph, the algorithm

finds the shortest path between that node

and every other.

Time Complexity: O(V^2 + E) or O(E log

V) with a priority queue

Bellman-

Ford

Algorithm

Computes shortest paths from a single

source vertex to all of the other vertices in

a weighted digraph. It is slower than

Dijkstra’s algorithm for the same problem,

but more versatile, as it is capable of

handling graphs in which some of the edge

weights are negative numbers.

Time Complexity: O(V * E)

Floyd-

Warshall

Algorithm

An algorithm for finding shortest paths in a

weighted graph with positive or negative

edge weights (but with no negative

cycles). A single execution of the algorithm

will find the lengths (summed weights) of

the shortest paths between all pairs of

vertices.

Time Complexity: O(V^3)

Minimum Spanning Tree Algorithms

Kruskal’s

Algorithm

A greedy algorithm that finds a minimum

spanning tree for a weighted undirected

graph. It finds a subset of the edges that

forms a tree that includes every vertex,

where the total weight of all the edges in

the tree is minimized.

Time Complexity: O(E log E) or O(E log V)

Prim’s

Algorithm

A greedy algorithm that finds a minimum

spanning tree for a weighted undirected

graph. It finds a subset of the edges that

forms a tree that includes every vertex,

where the total weight of all the edges in

the tree is minimized.

Time Complexity: O(E + V log V) using

Fibonacci heap

Common Dynamic Programming Problems

Fibonacci Sequence

Calculating the nth Fibonacci number using dynamic programming to avoid redundant calculations.

Knapsack Problem

Given a set of items, each with a weight and a value, determine the number of each item to include in a collection so that the total weight is less than or equal to a given limit and the

total value is as large as possible.

Longest Common Subsequence (LCS)

Find the longest subsequence common to all sequences in a set of sequences (often just two sequences).

Edit Distance

The minimum number of edits (insertions, deletions, or substitutions) needed to transform one string into another.

Matrix Chain Multiplication

Finding the most efficient way to multiply a given sequence of matrices.

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

