CHEAT HERO

Data Science Cheatsheet

A comprehensive cheat sheet covering essential concepts, tools, and techniques in Data Science. It provides a quick reference for machine learning algorithms, data manipulation, statistical methods, and more.

Fundamentals

Key Concep ⁻	ts
-------------------------	----

Common	Algorithms
0011111011	/ igontiniis

Supervised Learning	Learning from labeled data to predict outcomes.	Linear Regression: Predicts a continuous outcome using a linear equation.	
Examples: Regression, Classification.		Logistic Regression: Predicts a binary outcome using a logistic function.	
Unsupervised Learning	Discovering patterns in unlabeled data. Examples: Clustering, Dimensionality Reduction.	Decision Trees: Partitions data into subsets based on feature values to make predictions.	
Reinforcement Learning	Training an agent to make decisions in an environment to maximize a reward.	Random Forest: An ensemble of decision trees that averages predictions to improve accuracy.	
Bias-Variance Tradeoff	Balancing model complexity to minimize both bias (underfitting) and variance (overfitting).	Support Vector Machines (SVM): Finds the optimal hyperplane to separate data into classes.	
Cross-Validation	Evaluating model performance on multiple subsets of the data to ensure generalization.	K-Nearest Neighbors (KNN): Classifies data based on the majority class among its k nearest neighbors.	
Feature Engineering Creating new features or transforming existing ones to improve model accuracy.	K-Means Clustering: Partitions data into k clusters based on distance to cluster centroids.		

Python for Data Science

Creating a

Data Manipulation with Pandas

Data Visualization with Matplotlib and Seaborn

<pre>import pandas as pd data = {'col1': [1, 2], 'col2': [3, 4]} df = pd.DataFrame(data)</pre>
df['col1'] df[['col1', 'col2']]
df[df['col1'] > 1]
<pre>df.groupby('col1').mean()</pre>
df.dropna() df.fillna(0)

Basic Plotting with Matplotlib	<pre>import matplotlib.pyplot as plt plt.plot([1, 2, 3, 4]) plt.show()</pre>
Scatter Plot with Seaborn	<pre>import seaborn as sns sns.scatterplot(x='col1', y='col2', data=df) plt.show()</pre>
Histogram with Seaborn	<pre>sns.histplot(df['col1']) plt.show()</pre>
Box Plot with Seaborn	<pre>sns.boxplot(x='col1', y='col2', data=df) plt.show()</pre>

Scikit-learn for Machine Learning

Training a Model

from sklearn.linear_model import
LinearRegression
model = LinearRegression()
model.fit(X_train, y_train)

Making Predictions

y_pred = model.predict(X_test)

Model Evaluation

from sklearn.metrics import mean_squared_error
mse = mean_squared_error(y_test, y_pred)
print(mse)

Data Preprocessing

from sklearn.preprocessing import
StandardScaler
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

Train-Test Split

from sklearn.model_selection import
train_test_split
X_train, X_test, y_train, y_test =
train_test_split(X, y, test_size=0.2)

Statistical Methods

Descriptive Statistics

Inferential Statistics

Mean	Average value of a dataset. Formula: \$ \frac{\sum_{i=1}^{n} x_i}{n} \$	Hypothesis Testing	A method for testing a claim or hypothesis about a population parameter.
Median	Middle value of a sorted dataset.	P-value	Probability of obtaining results as extreme as the observed results,
Mode	Most frequent value in a dataset.		assuming the null hypothesis is true.
Standard Deviation	Measure of the spread of data around the mean. Formula: \$ \sqrt{\frac{\sum_{i=1}^{n} (x_i - \mu)^2}{n} \$	Confidence Interval	Range of values likely to contain the true population parameter with a certain level of confidence.
Variance	Square of the standard deviation.	T-test	Used to compare the means of two groups.
Formula: \$ \frac{\sum_{i=1}^{n} (x_i - \mu)^2}{n} \$	ANOVA	Used to compare the means of more than two groups.	

Model Evaluation and Tuning

Evaluation Metrics

Accuracy	Fraction of correctly classified instances. Formula: \$ \frac{\text{Number of correct predictions}}{Total number of predictions}} \$
Precision	Fraction of true positives among predicted positives. Formula: \$ \frac{\text{True Positives}}{True Positives + False Positives}} \$
Recall	Fraction of true positives among actual positives. Formula: \$ \frac{\text{True Positives}}{True Positives + False Negatives}} \$
F1-Score	Harmonic mean of precision and recall. Formula: \$ 2 \times \frac{\text{Precision} \times \text{Recall}} {\text{Precision + Recall}} \$
AUC-ROC	Area under the Receiver Operating Characteristic curve, measures the ability of a classifier to distinguish between classes.
Mean Squared Error (MSE)	Average squared difference between predicted and actual values. Formula: \$ \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 \$
R-squared	Proportion of variance in the dependent variable that can be predicted from the independent variables. Formula: $1 - \frac{i=1}{n} (y_i - \frac{1}{n} (y_i)^2} (y_i - y_i)^2 $

Hyperparameter Tuning

Grid Search: Exhaustively search a specified subset of the hyperparameters of a learning algorithm.

Randomized Search: Sample a given number of candidates from a hyperparameter search space.

Bayesian Optimization: Uses Bayesian inference to find the hyperparameters that optimize a given metric.

Cross-Validation: Evaluate model performance on multiple subsets of the data to ensure generalization.