CHEATHFRO Meteorology Cheat Sheet

A comprehensive cheat sheet covering the essentials of meteorology, including atmospheric composition, weather phenomena, forecasting techniques, and climate change basics. This resource is designed for students, weather enthusiasts, and anyone seeking a better understanding of the science behind weather and climate.

Atmospheric Basics

SHEE

Composition of the Atmosphere

Nitrogen (N2):	Approximately 78% of dry air.
Oxygen (O2):	Approximately 21% of dry air. Essential for respiration and combustion.
Argon (Ar):	About 0.93% of dry air. An inert gas.
Carbon Dioxide (CO2):	About 0.04% of dry air. Important for the greenhouse effect and plant photosynthesis.
Water Vapor (H2O):	Varies greatly (0-4%). Crucial for weather phenomena like clouds and precipitation.
Ozone (O3):	Absorbs harmful ultraviolet (UV) radiation in the stratosphere.

Atmospheric Layers

Troposphere: Lowest layer, where weather occurs. Temperature decreases with altitude. Stratosphere: Contains the ozone layer. Temperature increases with altitude due to ozone absorption of UV radiation. Mesosphere: Temperature decreases with altitude. Meteors burn up in this layer. Thermosphere: Temperature increases with altitude. Includes the ionosphere. Exosphere: Outermost layer, gradually fades into space.

Temperature Scales

Celsius	Water freezes at 0°C	Formula: °C =
(°C):	and boils at 100°C.	(°F - 32) × 5/9
Fahrenheit	Water freezes at 32°F	Formula: °F =
(°F):	and boils at 212°F.	(°C × 9/5) + 32
Kelvin (K):	Absolute temperature scale; 0 K is absolute zero.	Formula: K = °C + 273.15

Weather Phenomena

Weather Forecasting

Common symbols include: H: High pressure center

and semi-circles

. .

.

Weather Maps and Symbols

L: Low pressure center

Cold Front: Blue line with triangles Warm Front: Red line with semi-circles

Cloud Types

Cirrus (Ci):	High, wispy clouds made of ice crystals.
Cumulus (Cu):	Puffy, cotton-like clouds with flat bases.
Stratus (St):	Flat, featureless clouds that cover the entire sky.
Cumulonimbus (Cb):	Tall, towering clouds associated with thunderstorms.
Altocumulus (Ac):	Mid-level, patchy clouds, often in sheets or layers.
Nimbostratus (Ns):	Dark, gray, rain-producing clouds.

Understanding weather maps is essential for forecasting.

Occluded Front: Purple line with alternating triangles

Station Model: Provides detailed information about weather conditions at a specific location.

Precipitation Forms

Rain:	Liquid water droplets.
Snow:	Ice crystals.
Sleet:	Rain that freezes as it falls through a layer of cold air.
Freezing Rain:	Rain that freezes upon contact with a surface.
Hail:	Lumps of ice that form in thunderstorms.

Atmospheric Pressure

High Pressure Systems:	Associated with sinking air, clear skies, and stable weather.
Low Pressure Systems:	Associated with rising air, clouds, and precipitation.
Pressure Gradient Force:	Drives air from areas of high pressure to low pressure.
Coriolis Effect:	Deflects moving air to the right in the Northern Hemisphere and to the left in the Southern Hemisphere.

Forecasting Techniques

Persistence Forecasting:	Assuming that future weather will be similar to current weather.
Trend Forecasting:	Predicting future weather based on the movement and development of weather systems.
Numerical Weather Prediction (NWP):	Using computer models to simulate the atmosphere and predict future weather conditions.
Ensemble Forecasting:	Running multiple NWP models with slightly different initial conditions to assess forecast uncertainty.

Weather Instruments

Thermometer:	Measures air temperature.
Barometer:	Measures atmospheric pressure.
Anemometer:	Measures wind speed.
Hygrometer:	Measures humidity.
Radiosonde:	A balloon-borne instrument that measures temperature, humidity, pressure, and wind speed as it ascends through the atmosphere.
Weather Radar:	Detects precipitation and its intensity.
Weather Satellite:	Provides images of clouds, temperature profiles, and other atmospheric data from space.

Climate Change

Greenhouse Effect

The greenhouse effect is a natural process where certain gases in the atmosphere trap heat, warming the Earth. Key greenhouse gases include:

- Carbon Dioxide (CO2)
- Methane (CH4)
- Nitrous Oxide (N2O)
- Water Vapor (H2O)

Increased concentrations of these gases due to human activities enhance the greenhouse effect, leading to global warming.

Evidence of Climate Change

Rising Global Temperatures:	The Earth's average surface temperature has increased significantly over the past century.
Melting Ice and Glaciers:	lce sheets and glaciers are melting at an accelerating rate.
Sea Level Rise:	Global sea levels are rising due to thermal expansion of water and melting ice.
Changes in Precipitation Patterns:	Some regions are experiencing more intense rainfall and flooding, while others are facing prolonged droughts.
Ocean Acidification:	The absorption of excess CO2 by the oceans is causing them to become more acidic, threatening marine life.

Impacts of Climate Change

Climate change has far-reaching impacts, including:

- Increased frequency and intensity of extreme weather events (e.g., hurricanes, heatwaves, droughts)
- Threats to food security due to changing agricultural conditions
- Displacement of populations due to sea level rise and extreme weather
- Loss of biodiversity and ecosystem disruption
- Impacts on human health, including increased heatrelated illnesses and the spread of infectious diseases