

Complex Analysis Cheatsheet

A comprehensive cheat sheet covering key concepts, theorems, and formulas in complex analysis, providing a quick reference for students and professionals.

Complex Numbers and Functions

Basic Definitions		Complex Functions		Polar Form	
Complex Number:	z = x + iy, where x and y are real numbers, and i is the imaginary unit (i ² = -1).	Definition:	A function f: \mathbb{C} \rightarrow \mathbb{C} that maps complex numbers to complex numbers.	Representation:	z = r e^{i\theta} = r(\cos \theta + i \sin \theta), where r = z and \theta = \arg(z)
Real Part:	Re(z) = x	Representation:	f(z) = u(x, y) + iv(x, y), where u and v	Multiplication:	$z_1 z_2 = r_1 r_2 e^{i(\text{theta}_1 + 1)}$
Imaginary	lm(z) = y		are real-valued functions.		(theta_2)}
Part:		Limit:	$\lim_{z \to z_0} f(z) = L$ if for every \epsilon > 0, there exists a \delta > 0 such that $ f(z) - L < epsilon whenever0 < z - z_0 < \delta.$	Division:	$\frac{z_1}{z_2} = \frac{r_1}{r_2}$
Complex	$\operatorname{verline}\{z\} = x - iy$				
Conjugate:				Power:	z^n = r^n e^{i n \theta}
Modulus:	$ z = \sqrt{x^2 + y^2}$		1 - 1 -	Roots: 2	z^{1/n} = r^{1/n} e^{i(\theta + 2\pi k)/n}, for k = 0, 1,, n-1
Argument:	ent: \theta = \arg(z), such that z = z e^{i\theta} Derivative:	Continuity:	f(z) is continuous at z_0 if \lim_{z \to z_0} f(z) = f(z_0).		
		f'(z) = \lim_{h \to 0} f(z + h) - f(z)}{h}, if the limit exists.			

Analytic Functions

Cauchy-Riemann Equations

Equations:	$\label{eq:partial} $$ $$ \frac{y} = \frac{y} + x =$
Analyticity:	If $f(z) = u(x, y) + iv(x, y)$ is analytic in a domain D, then the Cauchy-Riemann equations hold in D.
Sufficient Condition:	If the partial derivatives of u and v are continuous and satisfy the Cauchy-Riemann equations in a domain D, then f(z) is analytic in D.
Complex Derivative:	f'(z) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} - i \frac{\partial u}{\partial y}
Harmonic Functions:	If f(z) is analytic, then u and v are harmonic functions, i.e., $frac{\rhoartial^2 u}{\rhoartial x^2} + frac{\rhoartial^2 u}{\rhoartial y^2} = 0$ and $frac{\rhoartial^2 v}{\rhoartial x^2} + frac{\rhoartial^2 v}{\rhoartial y^2} = 0$.

Elementary Functions

Cauchy's Theorem and Integral Formula

Exponential Function:	$e^z = e^{x + iy} = e^x(\cos y + i \sin y)$
Trigonometric Functions:	$\sin z = \frac{e^{iz} - e^{-iz}}{2i}, \sin z = \frac{e^{iz} + e^{-iz}}{2i}, \sin z = \frac{e^{iz} + e^{-iz}}{2i}$
Hyperbolic Functions:	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
Logarithmic Function:	$\log z = \ln z + i \arg z$
Principal Value of Logarithm:	$\text{Log } z = \n z + i \text{Arg } z, where -\pi < \text{Arg } z \line z$
Complex Power:	$z^c = e^{c \log z}$, where c is a complex constant.

Complex Integration

Contour Integrals

Definition:	\int_C f(z) dz = \int_a^b f(z(t)) z'(t) dt, where C is a smooth curve parameterized by z(t), a \leq t \leq b.	Cauchy's Theorem:	If f(z) is analytic in a simply connected domain D, then for any closed contour C in D, \oint_C f(z) dz = 0.
Properties:	\int_C [\alpha f(z) + \beta g(z)] dz = \alpha \int_C f(z) dz + \beta \int_C g(z) dz \int_{-C} f(z) dz = -\int_C f(z) dz	Cauchy's Integral Formula:	If f(z) is analytic in a simply connected domain D, and z_0 is any point in D inside a closed contour C, then f(z_0) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{z - z_0} dz.
ML Estimate:	$\left \operatorname{LC} f(z) dz \right = ML,$ where M is an upper bound for $ f(z) $ on C, and L is the length of C.	Generalized Integral Formula:	$f^{(n)}(z_0) = \frac{r_1}{2\pi i} \operatorname{c}_{r_1}(z_1) = \frac{r_1}{2\pi i} \operatorname$

Series and Residues

Taylor and Laurent Series

Taylor Series:	$ \label{eq:lff} \begin{split} & \mbox{If } f(z) \mbox{ is analytic in a disk } z - z_0 < R, \mbox{ then } \\ & \mbox{f}(z) = \mbox{sum}_{n=0}^{(n)} \mbox{ infty} \mbox{ frac}_{f^{(n)}(z_0)} \\ & \mbox{ n!} \mbox{ (} z - z_0)^n. \end{split} $
Laurent Series:	$\label{eq:linear_state} \begin{split} & \text{If } f(z) \text{ is analytic in an annulus } r < z - z_0 < R, \\ & \text{then } f(z) = \sum_{n=-\infty}^{\lambda infty} a_n (z - z_0)^n, \\ & \text{where } a_n = \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} \right]^2 \left[\frac{1}{2} - \frac{1}{2} \right]^2 \right]^2 \\ & \frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} \right]^2 \left[\frac{1}{2} - \frac{1}{2} \right]^2 \\ & \frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} \right]^2 \left[\frac{1}{2} - \frac{1}{2} \right]^2 \\ & \frac{1}{2} \left[\frac{1}{2} + \frac{1}{2}$

Residue Theorem

Applications of Residue Theorem

Residue:	The residue of f(z) at an isolated singularity z_0 is the coefficient a_{-1} in the Laurent series expansion of f(z) about z_0.
Residue Theorem:	If f(z) is analytic inside and on a closed contour C, except for a finite number of isolated singularities z_k inside C, then \oint_C f(z) dz = 2\pi i \sum_{k=1}^n \text{Res}(f, z_k).
Residue Calculation (Simple Pole):	If f(z) has a simple pole at z_0, then $\text{Res}(f, z_0) = \lim_{z \to 0} (z - z_0) f(z).$
Residue Calculation (Pole of Order n):	If f(z) has a pole of order n at z_0, then \text{Res}(f, z_0) = \frac{1}{(n-1)!} \lim_{z \to z_0} \frac{d^{n-1}}{dz^{n-1}}]; [(z - z_0)^n f(z)].

Improper	The Residue Theorem can be used to
Integrals:	evaluate improper integrals of the
	form \int_{-\infty}^{\infty} f(x) dx.
Trigonometric	The Residue Theorem can be used to
Integrals:	evaluate integrals of the form
	$int_0^{2pi} F(\cos \theta, \sin$
	\theta) d\theta.