Real Analysis Cheatsheet

A concise reference for real analysis, covering fundamental concepts, theorems, and techniques. Useful for quick review and problem-solving.

Basic Concepts

Sets and Set Operations

Union (∪)	$A \cup B = \{x : x \in A \text{ or } x \in B\}$
Intersection (∩)	$A \cap B = \{x : x \in A \text{ and } x \in B\}$
Difference ()	$A \setminus B = \{x : x \in A \text{ and } x \notin B\}$
Complement (Ac)	$Ac = \{x : x \in U \text{ and } x \notin A\}$, where U is the universal set.
De Morgan's Laws	$(A \cup B)c = Ac \cap Bc$ $(A \cap B)c = Ac \cup Bc$
Power Set (P(A))	The set of all subsets of A.

Real Numbers and Completeness

Axioms of Real Numbers: Field axioms, order axioms, and the completeness axiom.
Completeness Axiom (Least Upper Bound Property): Every non-empty subset of $\mathbb R$ that is bounded above has a least upper bound (supremum) in $\mathbb R$.
Archimedean Property: For any $x \in \mathbb{R}$, there exists $n \in \mathbb{N}$ such that $n > x$.
Density of Rationals: Between any two real numbers, there exists a rational number.
Density of Irrationals: Between any two real numbers, there exists an irrational number.

Sequences

Definition	An ordered list of real numbers: (xn), where $xn \in \mathbb{R}$ for all $n \in \mathbb{N}$.
Convergence	A sequence (xn) converges to x if for every $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that $ xn - x < \epsilon$ for all $n > N$.
Bounded Sequence	There exists M > 0 such that $ xn \le M$ for all $n \in \mathbb{N}$.
Monotone Sequence	Increasing: $xn \le xn+1$ for all n. Decreasing: $xn \ge xn+1$ for all n.
Monotone Convergence Theorem	A bounded monotone sequence converges.
Subsequence	A sequence formed from (xn) by selecting some of the elements, usually indexed by a strictly increasing sequence nk.

Limits and Continuity

Limits of Functions

Definition (ε-δ)	$\begin{aligned} &\lim x \to c \; f(x) = L \; \text{if for every} \; \epsilon > 0, \text{ there} \\ &\text{exists} \; \delta > 0 \; \text{such that if} \; 0 < x - c < \delta, \\ &\text{then} \; f(x) - L < \epsilon. \end{aligned}$
Sequential Criterion	$\lim x \to c f(x) = L$ if and only if for every sequence (xn) converging to c, with $xn \ne c$, the sequence $(f(xn))$ converges to L.
Limit Laws	Limits of sums, products, quotients (if the denominator's limit is non-zero) follow the expected algebraic rules.
One-Sided Limits	$ \lim x \to c + f(x) \text{ (right-hand limit) and lim} $ $ x \to c - f(x) \text{ (left-hand limit)}. $

Continuity

Definition	f is continuous at c if $\lim x \to c f(x) = f(c)$.
Sequential Criterion	f is continuous at c if and only if for every sequence (xn) converging to c, the sequence $(f(xn))$ converges to $f(c)$.
Properties	Sums, products, and compositions of continuous functions are continuous (where defined).
Intermediate Value Theorem (IVT)	If f is continuous on [a, b] and $f(a) \neq f(b)$, then for any value y between $f(a)$ and $f(b)$, there exists $c \in (a, b)$ such that $f(c) = y$.
Extreme Value Theorem (EVT)	If f is continuous on a closed and bounded interval [a, b], then f attains its maximum and minimum values on [a, b].

Uniform Continuity

Definition	$\begin{split} &f \text{ is uniformly continuous on A if for every} \\ &\epsilon > 0, \text{ there exists } \delta > 0 \text{ such that for all } x, \\ &y \in A, \text{ if } x-y < \delta, \text{ then } f(x)-f(y) < \epsilon. \ (\delta \\ &\text{depends only on } \epsilon, \text{ not on } x). \end{split}$
Heine- Cantor Theorem	If f is continuous on a closed and bounded interval [a, b], then f is uniformly continuous on [a, b].

Differentiation

Definition and Basic Theorems

Derivative Definition	$f'(x) = \lim_{h \to 0} (f(x + h) - f(x))$ / h, if the limit exists.
Differentiability Implies Continuity	If f is differentiable at x, then f is continuous at x.
Rules of Differentiation	Sum, product, quotient, and chain rules.

Mean Value Theorems

Rolle's Theorem:

If f is continuous on [a, b], differentiable on (a, b), and f(a) = f(b), then there exists $c \in (a, b)$ such that f'(c) = 0.

Mean Value Theorem (MVT):

If f is continuous on [a, b] and differentiable on (a, b), then there exists $c \in (a, b)$ such that f'(c) = (f(b) - f(a)) / (b - a).

Consequences of MVT:

If f'(x) = 0 for all x in an interval, then f is constant on that interval. If f'(x) > 0 (or f'(x) < 0) on an interval, then f is increasing (or decreasing) on that interval.

L'Hôpital's Rule

Indeterminate Forms	0/0, ∞/∞, 0 * ∞, ∞ - ∞, 1^∞, 0^0, ∞^0
L'Hôpital's Rule	If $\lim x \to c f(x) = 0$ and $\lim x \to c g(x) = 0$ (or both are ∞) and $\lim x \to c$ $f'(x)/g'(x)$ exists, then $\lim x \to c f(x)/g(x)$ $\lim x \to c f'(x)/g'(x)$.

Integration

Page 1 of 2 https://cheatsheetshero.com

Riemann Integration

Partition	A partition P of [a, b] is a finite set of points $\{x0, x1,, xn\}$ such that $a = x0 < x1 < < xn = b$.
Upper and Lower Sums	$\begin{split} &U(f,P)=\Sigma\text{Mi}(xi-xi\text{-}1),\text{where}\text{Mi}=\\ &\sup\{f(x):x\in[xi\text{-}1,xi]\}\\ &L(f,P)=\Sigma\text{mi}(xi-xi\text{-}1),\text{where}\text{mi}=\\ &\inf\{f(x):x\in[xi\text{-}1,xi]\} \end{split}$
Riemann Integral	f is Riemann integrable on [a, b] if the upper and lower integrals are equal. The common value is the Riemann integral $f(x)$ dx.
Integrability Condition	f is Riemann integrable if and only if for every $\varepsilon > 0$, there exists a partition P such that U(f, P) - L(f, P) < ε .

Fundamental Theorem of Calculus

FTC Part 1: If f is continuous on [a, b] and $F(x) = \int ax f(t) dt$, then $F'(x) = f(x)$ for $x \in (a, b)$.
FTC Part 2: If f is continuous on [a, b] and F is any antiderivative of f, then $\int ab f(x) dx = F(b) - F(a)$.

Improper Integrals

Type 1 (Infinite Interval)	$\int a\infty f(x) dx = \lim b \to \infty \int ab f(x) dx$
Type 2	If f is discontinuous at $c \in (a, b)$,
(Discontinuous	then $\int ab f(x) dx = \lim t \rightarrow c-\int at f(x)$
Integrand)	$dx + \lim_{t \to c} t + \int_{t} t dx$

Page 2 of 2 https://cheatsheetshero.com