

Number Theory Cheatsheet

A concise reference for key concepts, theorems, and formulas in Number Theory, covering divisibility, congruences, prime numbers, and classical theorems.

Prime Numbers

Divisibility and Primes

Basic Divisibility

Divisibility Notation	a b means 'a divides b', i.e., there exists an integer k such that b = ak.
Divisor Properties	If $(a + b)$ and $(a + c)$, then $(a + cy)$ for any integers x, y.
Transitivity of Divisibility	If (a b) and (b c), then (a c).
Divisibility by a Product	If $(a \mid c)$, $(b \mid c)$ and $(gcd(a, b) = 1)$, then $(ab \mid c)$.
Euclidean Algorithm	Efficiently computes the greatest common divisor (GCD) of two integers.
GCD Definition	gcd(a, b) is the largest positive integer that divides both a and b.

Prime Number Definition	A prime number is a natural number greater than 1 that has no positive divisors other than 1 and itself.
Fundamental Theorem of Arithmetic	Every integer greater than 1 can be uniquely represented as a product of prime numbers, up to the order of the factors.
Prime Factorization	Expressing a number as a product of its prime factors (e.g., $12 = 2^2 \times 3$).
Infinitude of Primes	There are infinitely many prime numbers.
Mersenne Primes	Primes of the form $2^{p} - 1$, where p is also prime.
Twin Primes	Pairs of primes that differ by 2 (e.g., 3 and 5, 5 and 7).

Congruences

Modular Arithmetic

Congruence Notation	a ≡ b (mod m) means 'a is congruent to b modulo m', i.e., m (a - b).	Fermat's Little Theorem	If p is prime and $gcd(a, p) = 1$, then $a^{p-1} \equiv 1 \pmod{p}$.
Properties of Congruences	If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then: • $a + c \equiv b + d \pmod{m}$	Euler's Theorem	If $gcd(a, m) = 1$, then $a \land \phi(m) = 1 \pmod{m}$, where $\phi(m)$ is Euler's totient function.
	 a - c ≡ b - d (mod m) ac ≡ bd (mod m) 	Euler's Totient Function	$\phi(m)$ counts the number of integers between 1 and m that are relatively prime to $m.$
Cancellation	If $ac \equiv bc \pmod{m}$ and $gcd(c, m) = 1$, then $a \equiv b \pmod{m}$.	Calculating Euler's Totient	
Linear Congruences	An equation of the form $ax \equiv b \pmod{m}$.	Chinese	Given a system of congruences $x \equiv a1 \pmod{m1}$, $x \equiv a2 \pmod{m2}$
Solving Linear Congruences	A solution exists if and only if $gcd(a, m) \mid b$. If a solution exists, there are $gcd(a, m)$ solutions modulo m.	a solution Theorem (CRT) j, there exists a unique solution modulo M = m1 * m2 mn.	
Modular Inverse	If $ax \equiv 1 \pmod{m}$, then x is the modular inverse of a modulo m. Exists if and only if $gcd(a, m) = 1$.	Applying CRT	The CRT provides a method to reconstruct a number from its remainders modulo pairwise coprime moduli.

Diophantine Equations

Linear Diophantine Equations

General Form	ax + by = c, where a, b, c are integers, and we seek integer solutions for x and y.
Solvability Condition	A solution exists if and only if gcd(a, b) c.
Finding Solutions	Use the Extended Euclidean Algorithm to find integers x0, y0 such that ax0 + by0 = gcd(a, b). If $gcd(a, b) c$, then $x = x0 * (c / gcd(a, b))$ and $y = y0 * (c / gcd(a, b))$ is a particular solution.
General Solution	If (x0, y0) is a particular solution, then the general solution is given by: x = x0 + (b / gcd(a, b)) * t y = y0 - (a / gcd(a, b)) * t where t is any integer.
Example	Solve $3x + 6y = 9$. Since $gcd(3, 6) = 3$ and $3 \mid 9$, a solution exists. From $3x + 6y = 3^*3$, we simplify to $x + 2y = 3$. A particular solution is $x=3$, $y=0$. General solution: $x = 3 + 2t$, $y = -t$.

Pythagorean Triples

Important Theorems

Definition	A Pythagorean triple consists of three positive integers a, b, and c, such that $a^2 + b^2 = c^2$.
Primitive Pythagorean Triple	A Pythagorean triple (a, b, c) is primitive if $gcd(a, b, c) = 1$.
Generating Pythagorean Triples	<pre>If m and n are positive integers with m > n, gcd(m, n) = 1, and one of m and n is even, then: a = m^2 - n^2 b = 2mn c = m^2 + n^2 forms a primitive Pythagorean triple.</pre>
Example	Let $m = 2$ and $n = 1$. Then: $a = 2^{2} - 1^{2} = 3$ b = 2 + 2 + 1 = 4 $c = 2^{2} + 1^{2} = 5$ Thus, (3, 4, 5) is a Pythagorean triple.

Arithmetic Functions

Common Arithmetic Functions

Multiplicativity

Divisor Function (σ(n))	$\sigma(n)$ is the sum of all positive divisors of n, including 1 and n itself. $\sigma(n) = \sum_{d \mid n} d$
Number of Divisors (τ(n) or d(n))	$\tau(n)$ is the number of positive divisors of n. $\tau(n) = \sum_{d n} 1$
Euler's Totient Function $(\phi(n))$	$\varphi(n)$ is the number of integers between 1 and n that are relatively prime to n. $\varphi(n) = \{k : 1 \le k \le n, gcd(n, k) = 1\} $
Möbius Function (µ(n))	 μ(n) is defined as: O if n has one or more repeated prime factors. 1 if n = 1. (-1)^k if n is a product of k distinct primes.
Example: σ(12)	The divisors of 12 are 1, 2, 3, 4, 6, and 12. Thus, $\sigma(12) = 1 + 2 + 3 + 4 + 6 + 12 = 28$.
Example: τ(12)	The number of divisors of 12 is 6. Thus, $\tau(12) = 6$.

Definition	An arithmetic function $f(n)$ is multiplicative if $f(mn) = f(m)f(n)$ whenever $gcd(m, n) = 1$. It is completely multiplicative if this holds for all m and n.
Examples of Multiplicative Functions	Euler's totient function $\phi(n)$, the divisor function $\sigma(n)$, and the number of divisors function $\tau(n)$ are multiplicative.
Möbius function	The Möbius function $\boldsymbol{\mu}(n)$ is also multiplicative.
Implications of Multiplicativity	If f(n) is multiplicative and n = p1^k1 * p2^k2 * * pr^kr , then f(n) = f(p1^k1) * f(p2^k2) * * f(pr^kr) .