CHEAT

Differential Equations Cheatsheet

Linear Equations

Form

Factor Solution

Example

Form

Test for

Exactness

Solution

Example

Exact Equations

Integrating

A comprehensive cheat sheet covering essential concepts, formulas, and methods for solving differential equations, including first-order, secondorder, and higher-order equations.

dy/dx + P(x)y = Q(x)

 $\mu(x) = e^{(\int P(x) dx)}$

Ce^(-x)

 $\partial M/\partial y = \partial N/\partial x$

M(x, y) dx] dy = C

 $y(x) = (1/\mu(x)) \int \mu(x)Q(x) dx$

M(x, y) dx + N(x, y) dy = 0

 $\int M(x, y) dx + \int [N(x, y) - \partial/\partial y \int$

 $(2x + y)dx + (x + 3y^2)dy = 0$ is exact. Solution: $x^2 + xy + y^3 = C$

 $dy/dx + y = x => \mu(x) = e^x =>$ $y(x) = e^{(-x)} \int e^{x} x dx = x - 1 +$

First-Order Differential Equations

Basic Forms and Definitions

A differential equation is an equation involving derivatives of a function.
A first-order differential equation involves only the first derivative.
General form: $dy/dx = f(x, y)$
An explicit solution is a function $y = \varphi(x)$ that satisfies the differential equation.
A general solution contains arbitrary constants.
An implicit solution is a relation $G(x, y) = 0$ that defines a solution implicitly.

An initial value problem (IVP) consists of a differential equation and an initial condition $y(x_0) = y_0$.

Separable Equations

Form	dy/dx = f(x)g(y)
Solution	$\int dy/g(y) = \int f(x) dx$
Example	$dy/dx = x/y \implies \int y dy = \int x dx \implies$ $y^2/2 = x^2/2 + C$

Second-Order Linear Homogeneous Equations

General Form

general solution.

ay'' + by' + cy = 0, where a, constants. The characteristic equation is $ar^2 + br + c = 0$. The roots r_1 and r_2 determine the form of the

General Solution	$y(x) = c_1 e^{(r_1 x)} + c_2 e^{(r_2 x)}$
Example	For $y'' - 3y' + 2y = 0$, $r_1 = 1$, r_2 = 2. So, $y(x) = c_1e^x + c_2e^x(2x)$

Repeated Real Roots $(r_1 = r_2 = r)$

Distinct Real Roots $(r_1 \neq r_2)$

Solution	$y(x) = C_1 e^{x}(rx) + C_2 x e^{x}(rx)$
Example	For $y'' - 4y' + 4y = 0$, $r = 2$. So, y(x) = 0.00(2x) + 0.00(2x)

Second-Order Linear Non-Homogeneous Equations

General Form	Method of Undetermined Coefficients		
ay'' + by' + cy = g(x) , where a , b , and c are constants and $g(x) \neq 0$.	Applicable when	g(x) is a polynomial, exponential, sine, cosine, or a combination of these.	
The general solution is $y(x) = y_c(x) + y_p(x)$, where $y_c(x)$ is the complementary solution and $y_p(x)$ is a particular solution. $y_c(x)$ is the general solution to the homogeneous equation $ay'' + by' + cy = 0$.	Procedure	Assume a form for $y_p(x)$ based on $g(x)$, with undetermined coefficients. Substitute into the differential equation to find the coefficients.	
	Example (Polynomial)	If $g(x) = x^2$, assume $y_p(x) = Ax^2 + Bx + C$	
	Example (Exponential)	$ f[g(x) = e^{(kx)}], assume y_p(x) = $ Ae^(kx)	
	Example (Sine/Cosine)	If $g(x) = sin(kx)$, assume $y_p(x)$ = Acos(kx) + Bsin(kx)	

Homogeneous Equations

Form	dy/dx = f(x, y) where $f(tx, ty) = f(x, y)$ for all t.
Substitution	v = y/x or $y = vx$, then $dy/dx = v + x(dv/dx)$
Example	$dy/dx = (x^2 + y^2) / (xy)$. Let $y = vx$. Resulting separable equation can be solved.

Bernoulli Equations

Form	$dy/dx + P(x)y = Q(x)y^n$
Substitution	v = y^(1-n)
Transformed Equation	dv/dx + (1-n)P(x)v = (1-n)Q(x) (linear in v)

Complex Conjugate Roots (r = $\alpha \pm \beta i$)

General Solution	$y(x) = e^{(\alpha x)(c_1 \cos(\beta x) + c_2 \sin(\beta x))}$
Example	For $y'' + 2y' + 5y = 0$, $r = -1 \pm 2i$, So, $y(x) = e^{(-x)(c_1\cos(2x) + 1)}$
	$c_2 \sin(2x)$

Initial Value Problems

Given $y(x_0) = y_0$	and $y'(x_0) = y_1$, solve for c_1
and c_2 using the i	nitial conditions.	

Substitute \mathbf{x}_{0} into the general solution and its derivative, then solve the resulting system of equations.

Variation of Parameters

Formula	$y_p(x) = u_1(x)y_1(x) + u_2(x)y_2(x)$
Where	$ \begin{bmatrix} u_1'(x) &= -y_2(x)g(x) \neq W(y_1, y_2) \\ u_2'(x) &= y_1(x)g(x) \neq W(y_1, y_2) \end{bmatrix} $
Wronskian	$W(y_1, y_2) = y_1y_2' - y_2y_1'$
General Solution	$y(x) = c_1y_1(x) + c_2y_2(x) + y_p(x)$

Laplace Transforms

b, and c are	General	$y(x) = c_1$
	Solution	

Definition

The Laplace Transform of a function	f(t)	is defined as:
-------------------------------------	------	----------------

$F(s) = L{f(t)} =$	= ∫₀^∞	e^(-st)	f(t)	dt
--------------------	--------	---------	------	----

Where s is a complex number and the integral converges.

Basic Laplace Transforms

L{1}	1/s , s > 0
L{t^n}	$\left[\begin{array}{cc} n! \ / \ s^{n+1} \end{array}\right], \ s > 0$, $\left[\begin{array}{cc} n \end{array}\right]$ is a non-negative integer
L{e^(at) }	1 / (s - a) , s > a
L{sin(at)}	[a / (s^2 + a^2)], [s > 0]
L{cos(at)}	[s / (s^2 + a^2)], [s > 0]

Properties of Laplace Transforms

Linearity	L{af(t) + bg(t)} = aL{f(t)} + bL{g(t)}
Derivative	$L{f'(t)} = sF(s) - f(0)$
Second Derivative	L{f''(t)} = s^2F(s) - sf(0) - f'(0)
Translation in s	$L\{e^{(at)}f(t)\} = F(s - a)$
Translation in t	$L{f(t - a)u(t - a)} = e^{-as}F(s)$, where $u(t)$ is the Heaviside step function
Convolution	L{(f * g)(t)} = F(s)G(s)

Solving Differential Equations with Laplace Transforms

 Take the Laplace transform of both sides of the differential equation. 	
 Use initial conditions and properties of Laplace transforms to express the equation in terms of F(s). 	

3. Solve for F(s).

4. Take the inverse Laplace transform of F(s) to find f(t).