

Linear Algebra Cheatsheet

A concise reference for key concepts, formulas, and operations in linear algebra. This cheat sheet covers vectors, matrices, linear transformations, and more, providing a quick guide for students, engineers, and researchers.

Vectors and Spaces

Basic Vector Operations

Vector Addition	$\mbox{mathbf{u} + mathbf{v} = (u_1 + v_1, u_2 + v_2,, u_n + v_n)}$
Scalar Multiplication	cmathbf{u} = (cu_1, cu_2,, cu_n)
Dot Product	$\label{eq:mathbf} $$ \mathbf{u} \cdot \mathbf{u} = \mathbf{u}_1 \mathbf{v}_1 $$ $$ + \mathbf{u}_2 \mathbf{v}_2 + + \mathbf{u}_n \mathbf{v}_n $$$
Vector Norm (Magnitude)	$\label{eq:continuous} $$ \ Vert = sqrt\{u_1^2 + u_2^2 + + u_n^2\} $$$
Cross Product (3D)	\mathbf{u} imes mathbf{v} = (u_2v_3 - u_3v_2, u_3v_1 - u_1v_3, u_1v_2 - u_2v_1)
Unit Vector	\hat{mathbf{u}} = \frac{mathbf{u}} {\ Vert mathbf{u} \ Vert}

Vector Spaces

Vector Space Axioms:

A set V is a vector space over a field F if it satisfies the following axioms for all \mathcal{V} , \mathcal{V} , \mathcal{V} in V and c, d \in F:

- \mathbf{u} + \mathbf{v} \in V (Closure under addition)
- 2. \mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}
 (Commutativity of addition)
- 3. (\mathbf{u} + \mathbf{v}) + \mathbf{w} =
 \mathbf{u} + (\mathbf{v} + \mathbf{w})
 (Associativity of addition)
- 4. There exists a zero vector \mathbf{0} \in V such that \mathbf{u} + \mathbf{0} = \mathbf{u} (Existence of additive identity)
- For each \mathbf{u} \in V, there exists -\mathbf{u} \in V such that \mathbf{u} + (-\mathbf{u}) = \mathbf{0} (Existence of additive inverse)
- c\mathbf{u} \in V (Closure under scalar multiplication)
- c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} +
 c\mathbf{v} (Distributivity of scalar multiplication
 over vector addition)
- 8. (c + d)\mathbf{u} = c\mathbf{u} + d\mathbf{u} (Distributivity of scalar multiplication over field addition)
- c(d\mathbf{u}) = (cd)\mathbf{u} (Compatibility of scalar multiplication with field multiplication)
- 1\mathbf{u} = \mathbf{u} (Identity element of scalar multiplication)

Subspaces

Definition	A subset W of a vector space V is a subspace if it is itself a vector space under the same operations defined on V.
Conditions for a Subspace	 W is non-empty (i.e., 0\in W). W is closed under addition: If \mathbf{u}, \mathbf{v} \in W, then \mathbf{u} + \mathbf{v} \in W. W is closed under scalar multiplication: If \mathbf{u} \in W and c is a scalar, then c\mathbf{u} \in W.
Examples	 The set containing only the zero vector, {0}, is a subspace. The entire vector space V is a subspace of itself.

A line through the origin in

\mathbb{R}^2.

\mathbb{R}^2 is a subspace of

Matrices

Basic Matrix Operations

Matrix Addition	$(A + B)_{ij} = A_{ij} + B_{ij}$ (elementwise addition)
Scalar Multiplication	$(cA)_{ij} = c(A_{ij})$ (multiply each element by the scalar)
Matrix Multiplication	$ (AB)_{ij} = \sum_{k=1}^{n} A_{ik}B_{kj} $ $ (row i of A times column j of B) $
Transpose	$(A^T)_{ij} = A_{ij}$ (swap rows and columns)
Trace	$\label{eq:lemmatics} $$ \operatorname{tr}(A) = \sum_{i=1}^{n} A_{ii} $$ (sum of diagonal elements)$
Determinant	\det(A) (a scalar value that can be computed recursively or by row reduction)
Inverse	A^{-1} (a matrix such that AA^{-1} = $A^{-1}A$ = I, where I is the identity matrix)

Linear Transformations

Special Matrices

- Identity Matrix (I): A square matrix with 1s on the main diagonal and Os elsewhere.
- Zero Matrix: A matrix with all elements equal to 0.
- **Diagonal Matrix**: A square matrix with non-zero elements only on the main diagonal.
- Symmetric Matrix: A square matrix A such that A = Δ^T
- Skew-Symmetric Matrix: A square matrix A such that A = -A^T.
- Orthogonal Matrix: A square matrix Q such that $Q^TQ = QQ^T = I$.

Matrix Properties

Associativity	(AB)C = A(BC)
Distributivity	A(B+C) = AB + AC $(A+B)C = AC + BC$
Scalar Multiplication	c(AB) = (cA)B = A(cB)
Transpose Properties	$(A + B)^T = A^T + B^T$ $(cA)^T = cA^T$ $(AB)^T = B^TA^T$
Inverse Properties	$(A^{-1})^{-1} = A$ $(AB)^{-1} = B^{-1}A^{-1}$
Determinant Properties	$\label{eq:det(AB)} $$ \det(AB) = \det(A) \det(B) $$ \det(A^T) = \det(A) $$ \det(A^{-1}) = \frac{1}{\det(A)} $$$

Page 1 of 2 https://cheatsheetshero.com

Definition and Properties

Definition	A linear transformation T: V \to W is a function between vector spaces V and W that preserves vector addition and scalar multiplication.
Properties	 T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v}) for all \mathbf{u}, \mathbf{v} \in V. T(c\mathbf{u}) = cT(\mathbf{u}) for all \mathbf{u} \in V and scalar c.
Zero Vector	T(0 _V) = 0 _W, where 0 _V and 0 _W are the zero vectors in V and W, respectively.
Linear Combination	$T(c_1\mathbb{T}_{v}_1 + c_2\mathbb{T}_{v}_2 + \dots + c_n\mathbb{T}_{v}_1) = \\ c_1T(\mathbb{T}_1) + \\ c_2T(\mathbb{T}_{v}_2) + \dots + \\ c_2T(\mathbb{T}_{v}_2) + \dots + \\ \\$

Kernel and Image

Kernel (Null Space)	\text{ker}(T) = {\mathbf{v}\in V : T(\mathbf{v}) = 0 _W}. The kernel is a subspace of V.
Image (Range)	$\label{eq:text} $$ \operatorname{T}(\mathbf{Y}) = T(\mathbf{Y}) : \mathbf{Y} . $$ in V}. The image is a subspace of W.$
Rank-Nullity Theorem	$\label{eq:dim(text{im}(T)) + dim(text{im}(T)) = dim(V)} = \\ \dim(V)$

Matrix Representation

Given a linear transformation T: V \to W, and bases B = ${\mathbb V}_1, ..., \mathbb V}_1$ for V and C = ${\mathbb V}_1, ..., \mathbb V}_1$ for W, the matrix representation of T with respect to B and C is the m \times n matrix A such that:

 $[T(\mathbb{v})]_C = A[\mathbb{v}]_B$

where [\mathbf{v}]_B and [T(\mathbf{v})]_C are the coordinate vectors of \mathbf{v} and T(\mathbf{v}) with respect to the bases B and C, respectively.

The columns of A are the coordinate vectors of $T(\mathbb{C}_i) \text{ with respect to the basis C, i.e., A = } \\ [[T(\mathbb{C}_i)_C \setminus [T(\mathbb{C}_i)_C \setminus ... \setminus [T(\mathbb{C}_i)_C]_C \setminus ... \setminus [T(\mathbb{C}_i)_C]_C]$

Eigenvalues and Eigenvectors

 $c_nT(\mathbf{v}_n)$

Definitions

Eigenvalue	A scalar \lambda is an eigenvalue of a square matrix A if there exists a non-zero vector \mathbf{v} such that A\mathbf{v} = \lambda\mathbf{v}.
Eigenvector	A non-zero vector \mathbf{v} is an eigenvector of a square matrix A corresponding to the eigenvalue \lambda if A\mathbf{v} = \lambda\mathbf{v}.
Eigenspace	The eigenspace of A corresponding to the eigenvalue \lambda is the set of all eigenvectors corresponding to \lambda, together with the zero vector. It is a subspace of \mathbb{R}^n and is denoted by $E_\lambda = \lambda + 1$ is A\mathbf{v} = \lambda\mathbf{v}.

Finding Eigenvalues and Eigenvectors

To find the eigenvalues of a matrix A, solve the characteristic equation:	
.det(A - \lambda I) = 0	
where I is the identity matrix and \lambda is the eigenvalue.	
Once the eigenvalues are found, the corresponding eigenvectors can be found by solving the equation:	
$A - \lambda = \mathbb{I} $	
or each eigenvalue \lambda.	

Diagonalization

Diagonalizable Matrix	A square matrix A is diagonalizable if there exists an invertible matrix P and a diagonal matrix D such that A = PDP^{-1}. The columns of P are the eigenvectors of A, and the diagonal entries of D are the corresponding eigenvalues.
Conditions for Diagonalization	An n \times n matrix A is diagonalizable if and only if it has n linearly independent eigenvectors.
Procedure	 Find n linearly independent eigenvectors \mathbf{v}_1,, \mathbf{v}_n of A. Form the matrix P whose columns are these eigenvectors: P = [\mathbf{v}_1 \ \mathbf{v}_2 \ \ \ \mathbf{v}_n]. Form the diagonal matrix D with the corresponding eigenvalues on the diagonal: D = \text{diag} (\lambda_1, \lambda_2,, \lambda_n). Then A = PDP^{-1}.

Page 2 of 2 https://cheatsheetshero.com