CHEAT SH

Mean

Median

Mode

Mean

Weighted

Statistics Cheat Sheet

A quick reference guide covering fundamental statistical concepts, formulas, and distributions. This cheat sheet provides a concise overview for students, researchers, and data analysts.

Descriptive Statistics

Measures of Central Tendency

Average of all values: \bar{x} =

Middle value when data is ordered. If n is even, average of the two middle values.

Most frequent value. A dataset can have

Average where each data point contributes

unequally: $frac{\sum_{i=1}^{n} w_i x_i}$

 $frac{sum_{i=1}^{n} x_i}{n}$

multiple modes or no mode.

{\sum_{i=1}^{n} w_i}

Measures of Dispersion

Range

Variance

Standard

Deviation

Coefficient of

Interquartile

Range (IQR)

Variation

Measures of Shape

Difference between the maximum and minimum values: Range = max(x_i) - min(x_i)	Skewness	Measure of asymmetry of the distribution. Positive skew (right-skewed) indicates a longer tail on the right side. Negative skew
Average squared difference from the mean: Sample Variance: s^2 = \frac{\sum {i=1}^{n} (x i - \bar{x})^2}		(left-skewed) indicates a longer tail on the left side. \text{Skewness} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^3}{n s^3}
<pre>{n-1} Population Variance: \sigma^2 = \frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N}</pre>	Kurtosis	Measure of the 'tailedness' of the distribution. High kurtosis indicates heavy tails (more outliers). Low kurtosis indicates light tails.
Square root of the variance: Sample Standard Deviation: s =		_ \text{Kurtosis} = \frac{\sum_{i=1}^{n} (x_i - \bar{x}^4} - 3
\sqrt{s^2} Population Standard Deviation: \sigma = \sqrt{\sigma^2}		
Relative measure of dispersion: CV = \frac{\sigma}{\mu} (for population), CV		

Probability

Basic Probability Concepts

Discrete Probability Distributions

Continuous Probability Distributions

Probability of an Event	P(A) = \text{Number of favorable outcomes}}{Total number of possible outcomes}}	Bernoulli Distribution	Probability of success (p) or failure (1-p) in a single trial. $P(X-x) = p^{x} (1-p) \lambda ((1-x))$ where $x = 1$	Uniform Distribution	Probability is constant over a given interval [a, b]. $f(x) = \sum_{i=1}^{n} f(x_i) = \sum_{i=1}^{$
Complement Rule	P(A') = 1 - P(A)		0 or 1	Normal	Bell-shaped curve, defined by mean
Addition Rule	P(A \cup B) = P(A) + P(B) - P(A \cap B)	Binomial Distribution	Number of successes in n independent trials.	Distribution	(\mu) and standard deviation (\sigma).
Conditional Probability	$P(A B) = \frac{P(A \setminus B)}{P(B)}$		P(X=k) = \binom{n}{k} p^k (1-p)^{(n- k)}		f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{- \frac{(x-\mu)^2}{2\sigma^2}}
Multiplication Rule	$P(A \subset B) = P(A B)P(B) = P(B A)P(A)$	Poisson Distribution	Number of events in a fixed interval of time or space.	Exponential Distribution	Time until an event occurs.
IndependentIf A and B are independent: P(A \capEventsB) = P(A)P(B), and P(A B) = P(A)		P(X=k) = \lambda^k e^{- \lambda}}{k!}		f(x) = \lambda e^{-\lambda x} for x \ge 0	
		Geometric Distribution	Number of trials until the first success.		

 $P(X=k) = (1-p)^{k-1} p$

= $\frac{s}{\sqrt{x}}$ (for sample)

(Q1): IQR = Q3 - Q1

The difference between the 75th

percentile (Q3) and the 25th percentile

Inferential Statistics

Confidence Intervals

General Form	Estimate \pm (Critical Value * Standard Error)
Cl for Population Mean (\mu) with known \sigma	\bar{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}
Cl for Population Mean (\mu) with unknown \sigma	\bar{x} \pm t_{\alpha/2, n-1} \frac{s}{\sqrt{n}}
Cl for Population Proportion (p)	\hat{p} \pm z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})} {n}}

Hypothesis Testing

Null Hypothesis (H ₀)	Statement being tested.
Alternative Hypothesis (H ₁)	Statement to be supported if H_0 is rejected.
Test Statistic	Value calculated from sample data to test the hypothesis.
P-value	Probability of observing a test statistic as extreme as, or more extreme than, the one computed, assuming H_0 is true.
Significance Level (\alpha)	Probability of rejecting H_0 when it is true (Type I error).
Decision Rule	lf p-value \le \alpha, reject H _o . Otherwise, fail to reject H _o .

Common Hypothesis Tests

Z-test	Testing population mean with known \sigma or large sample size. z = \frac{\bar{x} - \mu_0}{\sigma/\sqrt{n}}
t-test	Testing population mean with unknown \sigma and small sample size. t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}}
Chi-Square Test	Testing association between categorical variables. \chi^2 = \sum \frac{(O_i - E_i)^2}{E_i}

Regression Analysis

Simple Linear Regression

Multiple Linear Regression

Regression Equation	y = \beta_0 + \beta_1 x + \epsilon	Regression Equation	y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + + \beta_p x_p + \epsilon	
Estimating Coefficients	<pre>\hat{\beta_1} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})} {\sum_{i=1}^{n} (x_i - \bar{x})^2} \hat{\beta_0} = \bar{y} - \hat{\beta_1} \bar{x}</pre>	Adjusted R ²	Adjusts R ² for the number of predictors in the model. R_{adj}^2 = 1 - \frac{(1-R^2)(n-1)}{n-p- 1}	
Coefficient of Determination (R ²) Proportion of variance in dependent variable explained by the independent variable. R^2 = \frac{SSR}{SST} R^2 = \frac{SSR}{SST} SSR, SSE, SST Sum of Squares Regression (SSR), Sum of Squares Error (SSE), Total Sum of Squares (SST) SST = \sum (y_i - \bar{y})^2 SSE = \sum (y_i - \bar{y})^2 SSR = \sum (\hat{y_i} - \bar{y})^2	Proportion of variance in dependent	Assumptions of Linear Regression		
	variable explained by the independent variable.	 Linearity: The relationship between the independent and dependent variables is linear. 		
	R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}	2. Independence: The errors are independent of each other.		
	3. Homoscedasticity: The errors have constant variance.			
	SST = \sum (y_i - \bar{y})^2	4. Normality: The errors are normally distributed.		
	SSE = \sum (y_i - \hat{y_i})^2 SSR = \sum (\hat{y_i} - \bar{y})^2			

Equation	+ + \beta_p x_p + \epsilon	
Adjusted R ²	Adjusts R ² for the number of predictors in the model.	
	R_{adj}^2 = 1 - \frac{(1-R^2)(n-1)}{n-p- 1}	
Assumptions of Linear Regression		
 Linearity: T and depend 	he relationship between the independent lent variables is linear.	
2. Independer other.	nce: The errors are independent of each	
3. Homoscedasticity: The errors have constant variance.		
4. Normality:	The errors are normally distributed.	