Calculus Cheatsheet

A comprehensive calculus cheat sheet covering essential concepts, formulas, and techniques. This cheat sheet is designed to serve as a quick reference guide for students and professionals alike, providing a concise overview of calculus principles and methods.

A function f(x) is continuous at x = a

if $\lim_{x \to a} f(x) = f(a)$. This means that f(a) exists, the limit exists, and

Limits and Continuity

Limit Definitions

Derivatives

Basic Differentiation Rules

CHEAT

Formal Definition:	For every ϵ > 0, there exists a δ > 0 such that if 0 < x - a < δ , then f(x) - L < ϵ .	\ a
Intuitive Definition:	As x approaches a, f(x) approaches L.	
One-Sided	$\lim_{x \to a^-} f(x) and \lim_{x \to a^+}$	١.
Limits:	f(x)	١

Limit Laws

$\label{eq:lim_x to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$	
$\lim_{x \to a} [cf(x)] = c \lim_{x \to a} f(x)$	
$\label{eq:lim_x to a} [f(x)g(x)] = \lim_{x to a} f(x) \cdvt \lim_{x to a} g(x)$	
$\lim_{x \to a} frac{f(x)}{g(x)} = frac{\lim_{x \to a} f(x)} \\ \{\lim_{x \to a} g(x), if \lim_{x \to a} g(x) \cap q 0$	

Product and Quotient Rules

$frac{d}{dx}(x^n) = nx^{n-1}$ Power Rule: $frac{d}{dx}(c) = 0$ Constant Rule: Constant Multiple $frac{d}{dx}(cf(x)) = c frac{d}{dx}$ Rule: (f(x)) Sum/Difference $frac{d}{dx}(f(x) pm g(x)) =$ $frac{d}{dx}(f(x)) pm frac{d}{dx}$ Rule: (g(x))

Integrals

Basic Integration Rules

Power Rule:	\int x^n dx = \frac{x^{n+1}}{n+1} + C, for n \neq -1
Constant Rule:	int c dx = cx + C
Constant Multiple Rule:	$\int cf(x) dx = c \int f(x) dx$
Sum/Difference Rule:	$\tint [f(x) \ g(x)] \ dx = \ tf(x) \ dx \\ pm \ int \ g(x) \ dx$
\int \frac{1}{x} dx	In x + C
\int e^x dx	e^x + C

Applications of Derivatives

Related Rates

Identify the variables, find the equation relating them, differentiate with respect to time, and solve for the desired rate.

Optimization

Find critical points by setting the first derivative to zero or undefined, then use the first or second derivative test to determine local maxima and minima. Check endpoints for absolute extrema.

Product Rule:	$\label{eq:constraint} \int f(x)g(x) = f'(x)g(x) + f(x)g'(x)$
Quotient Rule:	$\label{eq:constraint} $$ \int dx \int \left[\frac{f(x)}{g(x)} \right] = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2} $$$
Chain Rule	
Chain Rule:	$frac{d}{dx}[f(g(x))] = f'(g(x)) \ cdot g'(x)$

Integration by Parts

С

Formula:	\int u dv = uv - \i	nt v du
Trigonometric Integrals		
\int \sin x dx		-\cos x + C
\int \cos x dx		\sin x + C
\int \sec^2 x dx		\tan x + C
\int \csc^2 x dx		-\cot x + C
\int \sec x \tan x	dx	\sec x + C
\int \csc x \cot x	dx	-\csc x + C

L'Hôpital's Rule

When to	For limits of the form \frac{0}{0} or
Use:	\frac{\infty}{\infty}.
Rule:	$\label{eq:lim_x to a} frac{f(x)}{g(x)} = \lim_{x \to a} frac{f'(x)}{g'(x)}$

Mean Value Theorem

Theorem:	If f is continuous on [a, b] and differentiable
	on (a, b), then there exists a c in (a, b) such
	that f'(c) = \frac{f(b) - f(a)}{b - a}

Derivatives of Trig Functions

Continuity

Definition:

Types of

Discontinuities:

\frac{d}{dx}(\sin x)	\cos x
\frac{d}{dx}(\cos x)	-\sin x
\frac{d}{dx}(\tan x)	\sec^2 x
\frac{d}{dx}(\csc x)	-\csc x \cot x
\frac{d}{dx}(\sec x)	\sec x \tan x
\frac{d}{dx}(\cot x)	-\csc^2 x

they are equal.

Removable, Jump, Infinite

Trigonometric Substitution

Use when you have integrals involving $sqrt{a^2 - x^2}$, $sqrt{a^2 + x^2}, or sqrt{x^2 - a^2}. Substitute x = a sin$ t, x = a tan theta, or x = a sec theta respectively.