
Scripting Utilities Cheatsheet
A comprehensive cheat sheet covering various scripting utilities, including `xargs`, `find`, `sed`, `awk`, `grep`, and `jq`. This cheat sheet provides a quick

reference to essential commands, options, and examples to help you automate tasks and manipulate data efficiently.

xargs & find

sed

awk

xargs Basics

xargs Build and execute command lines from

standard input.

Takes input from stdin and converts it to

arguments for a command.

xargs

[options

]

[command

]

General syntax. If command is omitted,

xargs defaults to /bin/echo .

-n max-

args

Use at most max-args arguments per

command line.

-I

replace-

str

Replace occurrences of replace-str in

the initial-arguments with names read from

standard input. Also implies -x and -L 1 .

-L max-

lines

Use at most max-lines non-blank input

lines per command line.

-d

delimite

r

Input items are terminated by the specified

character. Useful when filenames contain

spaces.

find Basics

find

[path]

[expressio

n]

Search for files in a directory hierarchy.

-name

pattern

Base of file name (the path with the

leading directories removed) matches

shell pattern pattern .

-type

type

File is of type type :

f : regular file

d : directory

l : symbolic link

-mtime n File’s data was last modified n *24 hours

ago.

-exec

command {}

+

Execute command ; all matched files will

be appended to the end of the command.

-delete Delete files; be careful when using this

option.

Combining xargs and find

Common use case: using find to locate files and

xargs to process them.

This command finds all .txt files in the current

directory and its subdirectories, and then counts the

number of lines in each file using wc -l . -print0 and

-0 handle filenames with spaces correctly.

find . -name "*.txt" -print0 | xargs -0 wc -l

sed Basics

sed 'command'

inputfile

Apply command to each line of inputfile . Output to standard

output.

sed -i 'command'

inputfile

Modify inputfile in-place.

s/pattern/replac

ement/flags

Substitute pattern with replacement . flags can be g

(global), i (case-insensitive), etc.

[address]comman

d

Apply command only to lines matching address . Address can

be a line number, a regex pattern, or a range.

d Delete line.

p Print line. (Often used with -n to suppress default printing).

sed Examples

Replace all occurrences of foo with bar in file.txt and print to standard output.

sed 's/foo/bar/g' file.txt

Replace all occurrences of foo with bar in file.txt in-place.

sed -i 's/foo/bar/g' file.txt

Delete all lines starting with # .

sed '/^#/d' file.txt

Print only lines that match pattern .

sed -n '/pattern/p' file.txt

Delete lines 2 through 5.

sed '2,5d' file.txt

Delete the last line.

sed '$d' file.txt

Page 1 of 3 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/108-scripting-utilities-cheatsheet
http://cheatsheetshero.com/user/all/108-scripting-utilities-cheatsheet
http://cheatsheetshero.com/user/all/108-scripting-utilities-cheatsheet
https://cheatsheetshero.com/

grep & jq

awk Basics

awk 'pattern { action }'

file

Process file line by line. If pattern matches,

execute action .

BEGIN { action } Execute action before processing any lines.

END { action } Execute action after processing all lines.

$0 The entire line.

$1, $2, ... The first, second, etc. field (column) in the line.

NF Number of fields in the current line.

awk Examples

Print the first field of each line.

awk '{ print $1 }' file.txt

Print the last field of each line.

awk '{ print $NF }' file.txt

Print all lines that match pattern .

awk '/pattern/ { print }' file.txt

Print all lines where the first field is greater than 10.

awk '$1 > 10 { print }' file.txt

Calculate the sum of the first field of all lines.

awk 'BEGIN { sum = 0 } { sum += $1 } END { print sum }' file.txt

Print the second field of each line in a CSV file, using , as the field separator.

awk -F',' '{ print $2 }' file.csv

grep Basics

grep

[options]

pattern

[file]

Search for pattern in file . If no

file is specified, grep searches standard

input.

-i Case-insensitive search.

-v Invert match. Select non-matching

lines.

-r or -R Recursive search.

-n Print line number with output lines.

-c Print only a count of matching lines per

file.

grep Examples

Print all lines in file.txt that contain foo .

grep 'foo' file.txt

Print all lines in file.txt that contain foo , case-

insensitive.

grep -i 'foo' file.txt

Print all lines in file.txt that do not contain foo .

grep -v 'foo' file.txt

Recursively search for foo in all files in the current

directory.

grep -r 'foo' .

Print all lines in file.txt that contain foo , along with

their line numbers.

grep -n 'foo' file.txt

Print the number of lines in file.txt that contain

foo .

grep -c 'foo' file.txt

jq Basics

jq [options]

'filter' [file]

JSON processor. If no file

specified, reads from stdin.

. The identity filter. Outputs the

input as is.

.key Access the value associated with

the key key .

.[] Access all elements in an array.

| Pipe filters.

--raw-output or

-r

Output raw strings, not JSON.

Page 2 of 3 https://cheatsheetshero.com

https://cheatsheetshero.com/

jq Examples

Pretty-print the JSON in data.json .

jq '.' data.json

Extract the value associated with the key name .

jq '.name' data.json

Extract all elements from the users array.

jq '.users[]' data.json

Extract the name field from each element in the users

array.

jq '.users[].name' data.json

Extract the age from each element of the top-level array.

jq '[.[] | .age]' data.json

Fetch data from an API and extract the title field from

each element in the resulting array.

curl -s https://api.example.com/data | jq '.[]

| .title'

Page 3 of 3 https://cheatsheetshero.com

https://cheatsheetshero.com/

