
TOML Configuration File Cheatsheet
A quick reference guide to the TOML (Tom's Obvious, Minimal Language) configuration file format syntax, data types, and structure, including useful

tips and examples.

Basic Syntax & Types

Key-Value Pairs

Basic assignment:

key = "value"

name = "Tom"

Keys can contain letters, numbers, underscores, and hyphens. first-name = "Tom" last_name = "Preston-Werner"

Dotted keys for nesting. Equivalent to tables. person.name = "Tom" person.age = 30

Is same as:

[person]

name = "Tom"

age = 30

Keys must be quoted if they contain special characters (like spaces, . , [,] , # ,

= etc.) or start with a digit.

"this is a key" = "value" "192.168.1.1" = "value"

Keys must be unique within their table/scope. [database] server = "192.168.1.1" server = "192.168.1.2" #

ERROR: Duplicate key

Case-sensitive. Fruit = 1 fruit = 2 # Valid (different keys)

Whitespace around keys and values is ignored. key = "value"

 key = "value"

key = "value"

All are equivalent.

Comments

Start with # and continue to the end of the line.

This is a full-line comment

key = "value" # This is an end-of-line comment

Comments can appear anywhere except within strings.

Used for explanations, disabling lines, etc.

Blank lines and comments are ignored by parsers.

Help improve readability and documentation of your config file.

Page 1 of 4 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/1056-toml-configuration-file-cheatsheet
http://cheatsheetshero.com/user/all/1056-toml-configuration-file-cheatsheet
http://cheatsheetshero.com/user/all/1056-toml-configuration-file-cheatsheet
https://cheatsheetshero.com/

Strings

Basic Strings: Enclosed in " .

Escape sequences: \" , \\ , \b , \f , \n , \r , \t , \uXXXX , \UXXXXXXXX

s1 = "I'm a string." s2 = "He said, \"Hello!\""

Multiline Basic Strings: Enclosed in """ .

Newline immediately after opening """ is trimmed.

Escape sequences work.

multiline_string = """

This is a

multiline

string.

"""

Result: "This is a\nmultiline\nstring.\n"

Multiline Basic Strings with \ at end of line: Concatenates lines, ignoring whitespace after

\ .
continued_string = """

The quick brown fox jumps over \

 the lazy dog.

"""

Result: "The quick brown fox jumps over the lazy

dog."

Literal Strings: Enclosed in ' .

No escaping is performed.

literal_string = 'C:\Users\name\Documents'

Multiline Literal Strings: Enclosed in '''' .

Newline immediately after opening '''' is trimmed.

No escaping.

multiline_literal = ''''

This is a

literal

multiline string.

''''

Result: "This is a\nliteral\nmultiline string.\n"

Numbers

Integers: Decimal numbers.

Underscores allowed for readability.

i1 = 99 i2 = 1_000 i3 = -5_000_000

Integers: Hexadecimal (prefix 0x). hex1 = 0xDEADBEEF hex2 = 0xdeadbeef

Integers: Octal (prefix 0o). oct1 = 0o123 oct2 = 0o755

Integers: Binary (prefix 0b). bin1 = 0b11010110

Floats: Standard decimal numbers with a fractional part or

exponent.

Underscores allowed.

f1 = 1.0 f2 = 3.14159 f3 = -0.01 f4 = 1_000.00 f5 = 1e20 f6 = -2E-2 f7 =

6.626e-34

Floats: Special values inf , -inf , nan .

Case-insensitive.

infinite = inf negative_infinite = -inf not_a_number = nan

Booleans

true Represents the boolean true value.

false Represents the boolean false value.

Case-sensitive. Must be lowercase true or false . enabled = true disabled = false

Page 2 of 4 https://cheatsheetshero.com

https://cheatsheetshero.com/

Data Structures

Datetimes

Full Datetime (with timezone):

RFC 3339 format.

YYYY-MM-DDTHH:MM:SSZ or YYYY-MM-DDTHH:MM:SS±HH:MM .

T separator can be lowercase t .

dt1 = 1979-05-27T07:32:00Z dt2 = 1979-05-27T00:32:00-07:00 dt3 = 1979-05-

27t07:32:00Z

Full Datetime (with timezone and fractional seconds):

RFC 3339 format.

dt4 = 1979-05-27T07:32:00.999Z

Local Datetime (without timezone):

YYYY-MM-DDTHH:MM:SS

ldt1 = 1979-05-27T07:32:00

Local Datetime (without timezone and with fractional

seconds):

ldt2 = 1979-05-27T07:32:00.999

Local Date (without time):

YYYY-MM-DD

date1 = 1979-05-27

Local Time (without date):

HH:MM:SS

time1 = 07:32:00

Local Time (with fractional seconds): time2 = 07:32:00.999

Arrays

Arrays are enclosed in [and] .

Elements are separated by commas.

Whitespace is ignored.

array1 = [1, 2, 3]

array2 = ["red", "yellow", "green"]

Arrays can contain elements of different types, but this is discouraged for

consistency.

array3 = [1, "a", 1.1, true] # Valid but discouraged

Arrays can contain other arrays or tables (inline tables).

array4 = [[1, 2], [3, 4]]

array5 = [{ name = "apple" }, { name = "banana" }]

Trailing commas are allowed.

array6 = [1, 2, 3,]

Tables

Tables (also known as sections or hash tables) are defined by a header like

[table-name] .

Keys below a table header belong to that table until the next table header or

EOF.

[database]

server = "192.168.1.1"

ports = [8000, 8001, 8002]

enabled = true

Table names follow the same rules as keys.

Quoted table names are allowed for special characters or starting with digits.

["table name"]

value = 1

Nested tables are created using dotted names.

This is equivalent to:

[products.fruit]

apple = { color = "red", taste = "sweet" }

[products.vegetables]

carrot = { color = "orange", taste = "earthy" }

[products]

 [products.fruit]

 apple = { color = "red", taste = "sweet" }

 [products.vegetables]

 carrot = { color = "orange", taste = "earthy" }

If a table or dotted key is defined implicitly (e.g., [a.b]), you cannot later

redefine it explicitly ([a]) or implicitly add keys before the explicit/later

definition.

[a.b]

c = 1 # Defines table 'a' implicitly

[a]

ERROR: table 'a' already defined implicitly by [a.b]

Page 3 of 4 https://cheatsheetshero.com

https://cheatsheetshero.com/

Tips & Best Practices

Inline Tables

Inline tables provide a more compact syntax for tables, especially useful

within arrays or as values.

Enclosed in { and } .

Key-value pairs separated by commas.

Must appear on a single line.

name = { first = "Tom", last = "Preston-Werner" }

Useful inside arrays.

points = [{ x = 1, y = 2 }, { x = 3, y = 6 }, { x = 7, y = 8 }

]

Contain key-value pairs just like standard tables, but cannot contain other

standard tables or arrays of tables (but can contain inline tables).

person = { name = "Tom", address = { street = "10 Downing St" }

}

Array of Tables

Used to represent a list of tables (or records).

Defined by a header like [[table-name]] .

Each [[table-name]] entry adds a new table to the array.

This creates an array named products containing two tables:

[[products]]

name = "apple"

[[products]]

name = "banana"

[

 { "name": "apple" },

 { "name": "banana" }

]

Keys below a [[table-name]] header belong to that specific table

instance until the next table header or EOF.

Nested arrays of tables are defined with dotted names.

[[parent.child]]

key = 1

[[parent.child]]

key = 2

Cannot define an array of tables if a standard table with the same name

already exists, or vice-versa.

[database]

server = "192.168.1.1"

[[database]] # ERROR: 'database' is already a standard table

url = "...

General Readability

Use underscores _ in large numbers for readability (e.g., 1_000_000).

Use blank lines to separate logical groups of key-value pairs or tables.

Add comments (#) to explain complex sections or provide context.

Prefer standard tables [table] for larger sections and inline tables {...}

for short, simple values or within arrays.

Limit line length for better readability.

Structuring Your File

Conventionally, place top-level key-value pairs first, followed by standard

tables, then arrays of tables.

Group related configuration options under appropriate table headers.

Use dotted keys ([a.b]) or nested table definitions ([a] [a.b])

consistently within a file.

Avoid mixing implicit table definitions (via dotted keys) and explicit

definitions in a way that causes errors (see Table section in Page 2).

Keep table and key names descriptive and concise.

Data Types

Use the most specific data type possible (e.g., boolean for flags, integer for

counts, datetime for timestamps).

Avoid mixed-type arrays unless absolutely necessary; it often indicates a

design issue.

Use multiline strings """...""" for blocks of text or strings containing

internal quotes/backslashes to avoid excessive escaping.

Use literal strings '...' or ''''...'''' for paths or regex patterns

where backslashes should be treated literally.

Tooling & Validation

Always validate your TOML files using a parser or linter before deploying.

Many programming languages have robust TOML parsing libraries.

Editors often have syntax highlighting and basic validation for .toml files.

File Naming Convention

Use the .toml file extension.

Page 4 of 4 https://cheatsheetshero.com

https://cheatsheetshero.com/

