CHEAT! = YAML Essentials Cheatsheet
SHEETSgiEHg

data exchange.

YAML Basics & Syntax

Fundamental Syntax Rules

A concise guide to the YAML data serialization format, covering syntax, data types, collections, and advanced features for configuration files and

Indentation
= Uses spaces for nesting, no tabs.

« Consistent indentation is crucial.

Key-Value Pairs
» Syntax: key: value

* Key must be unigue within a map.

« Space after the colon is required.

Maps (Mappings)
» Represent key-value pairs.
« Keys are unique strings by default.

» Nested structures are created via indentation.

Document Separators
. --- Separates directives from the document.

. ... Indicates the end of a document.

Reserved Characters
. 6 # = P , [1 { 1@ * & | | > ' "oy

» These may need quoting or escaping depending on context.

Example Structure:

person:
name: Alice # This is a comment
age: 30

city: New York

YAML Data Types (Scalars)
Scalar Types & Notation

Comments
e Startwith # .

« Can be on their own line or at the end of a line.

Lists (Sequences)
» Start with - followed by a space.

* Items are at the same indentation level.

Case Sensitivity
» Keys and scalar values are case-sensitive.

Root Element
» A YAML file can be a single scalar, list, or map.

Whitespace
= Significant for indentation.

» Trailing whitespace should be avoided.

Example List:

- item 1
- item 2

- item 3

Plain Scalars (Most Common)
« Strings without quotes.

« Numbers, booleans, null, dates/times are often parsed automatically.

Numeric Types
¢ Integers: 123 , +45 , -67

e Floats: 1.23 , -4.5e+6 , .inf , -.inf , .nan

Null Type
* Represents a null or empty value.

« Common representations: null , Null , NULL , ~, '' (empty string can often be

interpreted as null depending on context/loader).

Page 1 of 5

Quoted Scalars
« Single('...')orDouble("...").
= Used for strings containing special characters or for
explicit string typing.

« Double quotes allow escape sequences (\n , \t ,etc.).

Boolean Types
* Represent truth values.

« Common representations: true , false , True ,

False , on , off , yes , no

String Examples:
plain: This is a plain string
single_quoted: 'This is a string with spaces'
double_quoted: "This string includes a newline\nand
quotes \""

empty_string: ""

https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/1054-yaml-essentials-cheatsheet
http://cheatsheetshero.com/user/all/1054-yaml-essentials-cheatsheet
http://cheatsheetshero.com/user/all/1054-yaml-essentials-cheatsheet
https://cheatsheetshero.com/

Multi-line Strings

« Literal Block (|): Preserves newlines and leading indentation of subsequent lines.
« Folded Block (>): Folds newlines into spaces, preserving blank lines.

« Indicator (- or +): Controls whether trailing newlines are kept (+) or stripped (-).

Default is stripped.

Folded Block Example:

quote: >
This is a very long
sentence that should
be folded into a

single line.

Date & Time Types

* YAML has standard representations for dates and times.

. Iltimestamp is the common tag, often inferred.

date: 2023-10-27
datetime: 2023-10-27T10:00:00Z
datetime_offset: 2023-10-27 10:00:00-05:00

YAML Collections (Lists & Maps)

Lists (Sequences)

Literal Block Example:

poem: |

This is the first line.

This is the second line.

This is the third line.

Explicit Typing (Tags)
» Force a scalar to be a specific type.

e Syntax: !!type value

string_int:
int_string:

integer

Binary Data

Ilstr 123 # Forces '123' to be a string

I1int "123" # Forces

"123" to be an

» Represented using base64 encoding.

* Requires the

I'lbinary tag.

data: !!binary |

RO1GOD1hDAAMAKIFAOCWSP////8yMj

IyAAAAAAACWAAAAADAAMAAACDPSP

aLnjjmoCN1oAAKeWwO

Block Style List
« Eachitem starts with - followed by a space.

* ltems are at the same indentation level.

* Items can be scalars, maps, or other lists.

Nested Block Lists
« Achieved through consistent indentation.

Flow Style List
= Similar to JSON arrays.

e Uses [] withitems separated by ,

List Containing Maps
= Common structure for lists of objects.

Empty List
* Represented by just [] .

Page 2 of 5

Example Block List:

fruits:
- Apple
- Banana

- Orange

Example Nested Lists:

matrix:
- -1
- 2
== B
- 4

Example Flow List:

colors: [red, green, blue]

Example List of Maps:

people:

- name: Alice

age: 30
- name: Bob
age: 25

Example Empty List:

empty_items:

(1

https://cheatsheetshero.com

https://cheatsheetshero.com/

Using 2 and : in Lists (Less Common) Combined List/Map Structure:

* YAML allows complex keys using ? .

config:
users:
- ? keyl id: 1
: valuel
name: UserA
? key2 id: 2
- id:
: value2

name: UserB
settings:
theme: dark

language: en

Maps (Mappings / Dictionaries)

Block Style Map Example Block Map:

= Each key-value pair is on a new line, indented under the parent map.
user:

e Syntax: key: value .
name: Alice
age: 30

isStudent: false

Nested Block Maps Example Nested Maps:

« Achieved by indenting child maps under their parent keys.
company :

name: Example Corp
address:
street: 123 Main St

city: Anytown

Flow Style Map Example Flow Map:
= Similar to JSON objects.

 Uses {} with key-value pairs separated by ,

settings: { theme: dark, language: en }

* Syntax: { keyl: valuel, key2: value2 }

Maps Containing Lists Example Map with List:
A common pattern to group related items under a key.)
config:
servers:

- prod.example.com
- dev.example.com

ports: [80, 443]

Complex Keys (2) Empty Map
e Any value can be a map key if denoted with 2 . « Represented by just {} .

? - address
- shipping

: This is the shipping address

Example Empty Map: Combining Styles
« Block and Flow styles can be mixed within a document.

empty_settings: {}
* Flow style can be useful for short collections.

Advanced YAML Features

Anchors and Aliases

Anchors (&) Aliases (*)
« Mark a node (scalar, list, map) for future reference. » Reference a previously defined anchor.
e Syntax: &anchor_name value e Syntax: *anchor_name

« The alias takes on the value/structure of the anchored node.

Page 3 of 5 https://cheatsheetshero.com

https://cheatsheetshero.com/

Usage:
« Avoid repetition of data.

» Define templates or common configurations.

Merging (<<)

» Special syntax used with aliases to merge the contents of a map anchor into the

current map.

» Aliases are processed first, then subsequent keys in the current map override keys

from the alias.

Best Practice:
= Place anchors near the top of the document or in a logical section.

Example Basic Usage:

default_settings: &defaults
timeout: 30

retries: 3

servicel:
<<: *defaults # Merge defaults into servicel

url: http://svcl.example.com

service2:
<<: *defaults # Merge defaults into service2
url: http://svc2.example.com

timeout: 60 # Override default timeout

Anchors for Lists/Scalars:
Can anchor non-map nodes too.

common_list: &list_items
- item A

- item B

listl: *1list_items
list2:

- item C

*list_items # Adds the list as a sub-list

Caution:

Circular references using anchors/aliases are usually disallowed
by parsers.

Tags
Purpose: Syntax:
« Explicitly define the data type or structure of a node. . Itag_name value

» Overrides the default type inferred by the parser.

Standard YAML Tags:
o Prefixedwith 1! (eqg., !!str, t!tint, !!map , !!seq , !!bool , !!null ,
11float , !!timestamp , !!binary).

= These are usually inferred, but can be explicit.

Custom Tags:
» Define application-specific types or objects.

» Syntax: !your_tag_name value

» The parser needs to know how to handle the custom tag.

Local Tags:

e Start with ! followed by non-punctuation, typically !'tag or !prefix!tag .

+ Example: 'MyoObject { key: value }

Directives (less common for users):
e %YAML - specifies YAML version.

e %TAG - associates a URI prefix with a handle.

%TAG !ex! tag:example.com,2023:
--- # start of document
user: !ex!User # refers to tag:example.com,2023:User

id: 123

Page 4 of 5

« Can be applied to any node (scalar, list, map).

Example Standard Tag:
price: !!float "10.99" # Ensures it's a float, even
if quoted
is_valid: !!bool "no" # Ensures it's a boolean

Example Custom Tag:

! Iperson
name: Alice

age: 30
Global Tags:

« Startwith 1! (standard) ora URI prefix (e.g.,
lyaml!tag:yaml.org,2002:str).

Tagging Anchored Nodes:
» The tag applies to the node before the anchor or alias.

https://cheatsheetshero.com

https://cheatsheetshero.com/

Multiple Documents

Purpose: Separator (---)
= Store multiple distinct YAML documents within a single file. » Marks the beginning of a new document.
« Useful for config files, log streams, etc. e Must be on aline by itself.

End Marker (...) Example Multiple Documents:

« Optionally marks the end of a document.)
Document 1: User Config

« Useful to signal the end of the last document without a subsequent --- .

user:
name: Bob
id: 456

Document 2: App Settings
app:
theme: light

version: 1.0

Reading Multiple Documents Common Use Cases:
* YAML parsers typically offer functions to load all documents from a stream or « Configuration files for complex systems (e.g., Kubernetes).
file. » Data exchange protocols.
Each document is independent Directives
« Anchors and aliases defined in one document are typically not accessible in « Directives (%YAML , %TAG) apply only to the next document,
subsequent documents (parser dependent, but standard behavior). unless the %YAML directive changes the version rules.

Tips, Tricks, and Best Practices

General Guidelines

Use Spaces, Not Tabs Consistent Indentation
» Absolutely critical for correct parsing. Most editors can be configured to « Stick to 2 or 4 spaces for indentation throughout your file.
insert spaces for tabs.

Quote Strings Wisely Keep Lines Readable
» Quote strings if they: « Avoid overly long lines.
+ Start with a special character (-, : , 2, etc). « Use multi-line string syntax (| , >) for longer text blocks.
« Contain internal special characters.
« Look like numbers, booleans, or null ('123' , 'yes' , 'null').
Comments are Your Friend Avoid Trailing Whitespace
« Explain complex structures, default values, or the purpose of sections. « Can sometimes interfere with parsing, especially with multi-line strings.
Use Anchors/Aliases for Repetition Prefer Block Style for Structure
» Increases readability and reduces file size for repeated blocks of data. « Block style (indented) is generally more readable for complex nested
structures than flow style.
Use Flow Style for Simple Collections Validate Your YAML
o Shortlists ([a, b, c])ormaps({key: value})can be more concise « Use online validators or command-line tools (yamllint , yq) to check
in flow style. syntax.

Common Pitfalls

Using Tabs for Indentation: Leads to parsing errors. Always use spaces.

Inconsistent Indentation: Mixing space counts (e.g., 2 spaces here, 4 spaces there) breaks structure.

Forgetting Space After Colon/Dash: key:value or -item isinvalid. Needs space: key: value , - item .

Unquoted Strings: Values like yes , no , on , off , numbers, and dates can be auto-converted unexpectedly if not quoted when intended as strings.
Special Characters: Forgetting to quote or escape strings containing : , -, *, &, ? ,etc

Complex Keys: Using non-string keys in maps without the 2 explicit notation (though many parsers handle simple non-string keys).

Unexpected Type Coercion: YAML's flexibility in type inference can sometimes lead to values being interpreted differently than intended (e.g., 1e2 as a float,
010 as an octal integer). Use explicit tags (!!str , !lint)if needed.

Page 5 of 5 https://cheatsheetshero.com

https://cheatsheetshero.com/

