
Alan AI Cheatsheet
Your quick reference for building multimodal conversational experiences with Alan AI. Covers script concepts, client API, handlers, and best

practices.

Alan AI Scripting Basics

Intents & Commands

Basic Intent

intent('hello world', p => { ... });

Matches simple phrases like ‘hello world’.

Intent with Wildcards

intent('I want *', p => { ... });

Matches phrases like ‘I want coffee’, ‘I want pizza’, etc.

Intent with Entities

intent('I want $(item P:item~)', p => { ... });

Matches ‘I want coffee’ and captures ‘coffee’ as an entity ‘item’.

Multiple Phrases

intent(['What is $(item P:item~)', 'Tell me about $(item P:item~)'], p

=> { ... });

Matches either phrase.

Contextual Intent

intent('yes', { in: 'confirm_order' }, p => { ... });

Only matches ‘yes’ when in the ‘confirm_order’ context.

Command (No NLU)

intent({ command: 'start_game' }, p => { ... });

Triggered directly from the client via alanBtn().callClient('start_game');

Capturing Entity Value

Inside the intent handler:

Accesses the recognized value of the ‘item’ entity.

p.item.value

Responding with Text

p.play('Okay, I can do that.');

Alan says the text.

Responding with Sound/SSML

p.play('<audio src="sound.mp3"/>');

Plays a sound file. Alan supports SSML.

Chaining Plays

p.play('First part.'); p.play('Second part.');

Plays sequentially.

Playing from List

p.play(['OK.', 'Got it.']);

Randomly picks one response.

Setting Visual State

p.visual({ screen: 'items', data: itemsList });

Updates the visual state on the client application.

Calling Client Function

p.callClient('updateCart', { item: p.item.value });

Triggers a handler (onCommand) on the client side.

Adding Follow-up Question

p.play('What size do you need?'); p.then(p => { ... });

Sets up a follow-up intent block.

Ending Conversation

p.play('Okay, I'm done.'); p.resolve();

Alan finishes speaking and resolves the current intent processing.

Handling No Match

Use the fallback intent at the end of your script to catch unrecognized

phrases.

Best Practice: Be Specific

Define specific intents before using broad ones or fallback to avoid

misinterpretations.

Best Practice: User Testing

Test with real users speaking naturally to refine your intents.

Page 1 of 6 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/1050-alan-ai-cheatsheet
http://cheatsheetshero.com/user/all/1050-alan-ai-cheatsheet
http://cheatsheetshero.com/user/all/1050-alan-ai-cheatsheet
https://cheatsheetshero.com/

Advanced Script Concepts

Follow-ups and Contexts

Basic Follow-up

Sets up a temporary context (p.then) for the next user turn.

intent('I want a $(item P:item~)', p => {

 p.play('Okay, a ' + p.item.value + '. What size?');

 p.then(p => {

 intent('$(size P:size~)', p => {

 p.play('Got it. Size ' + p.size.value);

 });

 });

});

Named Contexts

Use p.setContext('context_name') to transition to a new context, or

p.setContext('') to go back to the global context.

intent('start order', p => {

 p.play('What would you like to order?');

 p.setContext('order_context');

});

intent('I want $(item P:item~)', { in: 'order_context' }, p => {

 p.play('Adding ' + p.item.value + ' to your order.');

 // Stays in 'order_context'

});

Entering Context on Match

The context option in the intent definition sets the context after the intent

matches and before its handler runs.

intent('start search', p => {

 p.play('Okay, what are you looking for?');

}, { context: 'search_context' }); // Enter context immediately

after this intent matches

intent('$(query P:query~)', { in: 'search_context' }, p => {

 p.play('Searching for ' + p.query.value);

 p.setContext(''); // Exit context after processing

});

Context Lifecycle

p.then() creates a temporary context for only the very next turn. If

the user says something that doesn’t match the intent within p.then ,

they exit the temporary context.

p.setContext('name') creates a persistent context that remains

active until explicitly changed or cleared with p.setContext('') .

Intents with the in: 'context_name' option only activate when that

specific context is active.

Global intents (no in option) are always active, regardless of the

current context.

Tips for Contexts

Use contexts to manage conversation flow and disambiguate user input.

Group related intents within the same context.

Design contexts to guide the user through specific flows (e.g., checkout,

account setup).

Don’t create too many contexts; keep it manageable.

Avoiding Context Loops

Ensure there are paths to exit contexts, either by matching a specific intent

within the context that calls p.setContext('') or by having global intents

that can interrupt and take the user elsewhere.

Accessing Context Name

p.context returns the name of the current active context.

Debug Tool: Context View

Use the Alan AI Studio Debugger’s ‘Contexts’ tab to see which contexts are

active and how they change during a conversation.

Script API (`p` object)

p.play(response)

Makes Alan say response . Can be

string, array of strings, or SSML.

p.then(handler)

Sets up a follow-up intent handler

for the next turn.

p.setContext(contextName)

Sets the active context.

contextName can be a string or

'' to clear.

p.resolve()

Indicates the intent handling is

complete for this turn.

p.repl(script)

Dynamically adds new script code.

Use with caution.

p.callClient(methodName,

params)

Calls a method on the client side via

the onCommand handler.

p.visual(visualState)

Updates the visual state object on

the client side.

p.nlu.text

The raw text recognized by the

ASR/NLU engine.

p.nlu.tokens

An array of recognized tokens.

p.nlu.intent

The name of the matched intent.

p.nlu.entities

An object containing recognized

entities and their values.

p.nlu.slots

An object containing recognized

slots and their values.

p.userData

An object to store and retrieve user-

specific data across turns and

sessions. Persists across sessions if

enabled.

p.state

Similar to p.userData but typically

used for temporary state within a

session. Does not persist across

sessions.

p.random(arr)

Selects a random element from the

array arr .

p.log(message)

Logs a message to the Alan AI

Studio Debugger console.

Page 2 of 6 https://cheatsheetshero.com

https://cheatsheetshero.com/

Client API & Handlers

Client-Side Integration (Web/Mobile)

Initializing Alan Button

Replace 'YOUR_ALAN_KEY' with your actual SDK key from Alan AI Studio.

import alanBtn from '@alan-ai/alan-sdk-web';

alanBtn({

 key: 'YOUR_ALAN_KEY',

 onCommand: function(commandData) {

 // Handle commands from the script

 },

 onEvent: function(event) {

 // Handle button and conversation events

 },

 onButtonState: function(state) {

 // Handle button state changes (listening, processing, idle)

 },

 onVisualState: function(visualState) {

 // Handle visual state updates from the script

 },

 onConnectionStatus: function(status) {

 // Handle connection status changes

 }

});

Key Handlers

onCommand : Receives data sent from the script using p.callClient(methodName, params) . commandData object includes command (methodName)

and other properties sent from script.

onVisualState : Receives the object sent from the script using p.visual(visualState) . Use this to update your UI based on the conversation state.

onEvent : Catches various events like voice:start , voice:stop , recognizer:start , recognizer:end , script:loaded , etc.

onButtonState : Notifies when the button changes state (e.g., becomes active/listening, processing, idle).

Sending Commands to Script

Use the callClient method of the Alan button instance:

This is useful for triggering script logic from UI actions.

const alanBtnInstance = alanBtn({...});

// Later, to send a command:

alanBtnInstance.callClient('start_game');

// In your Alan script, you'll have:

intent({ command: 'start_game' }, p => {

 p.play('Starting the game!');

});

Setting Visual State from Client

While primarily set from the script using p.visual() , you can also update the visual state from the client if needed (though less common):

This updates the visual property of the p object in the script for the next turn.

alanBtnInstance.setVisualState({ page: 'homepage', userStatus: 'loggedIn' });

Page 3 of 6 https://cheatsheetshero.com

https://cheatsheetshero.com/

Advanced Topics & Best Practices

Sending Text to Alan

Allows sending text to Alan as if the user spoke it:

Useful for initial prompts or integrating with chat interfaces.

alanBtnInstance.sendText('what is the weather?');

Activating/Deactivating Alan

Control the button’s listening state:

alanBtnInstance.activate(); // Start listening

alanBtnInstance.deactivate(); // Stop listening

alanBtnInstance.playText('Hello!'); // Make Alan speak without activating listening

Working with Visual State

The visualState object received in onVisualState should mirror your UI state. Alan script can then query this state to make decisions:

Best Practice: Design your visual state carefully to represent relevant UI information the script might need.

// Script side:

intent('go back', p => {

 if (p.visual.screen === 'details') {

 p.play('Going back to list.');

 p.visual({ screen: 'list' });

 } else {

 p.play('I can't go back from here.');

 }

});

Troubleshooting Client Integration

Check the network requests in your browser/app’s developer tools to see if the connection to Alan AI is successful.

Ensure your SDK key is correct.

Use alanBtn().remove(); during component unmount/cleanup in frameworks like React/Vue to prevent memory leaks.

Global Variables & Data Persistence

Global Variables

Declare variables outside of intent blocks but inside the main script function:

Global variables persist throughout the script’s lifecycle on the server.

let order = [];

intent('add $(item P:item~)', p => {

 order.push(p.item.value);

 p.play(`${p.item.value} added.`);

});

intent('what is in my order', p => {

 p.play('You have ' + order.join(', ') + ' in your order.');

});

User Data (p.userData)

Use p.userData to store information specific to the current

user. This data can persist across sessions if enabled in the

project settings.

intent('set my name to $(name P:name~)', p => {

 p.userData.userName = p.name.value;

 p.play('Got it, ' + p.userData.userName);

});

intent('what is my name', p => {

 if (p.userData.userName) {

 p.play('Your name is ' +

p.userData.userName);

 } else {

 p.play('I don't know your name yet.');

 }

});

Page 4 of 6 https://cheatsheetshero.com

https://cheatsheetshero.com/

Session State (p.state)

Use p.state for temporary data relevant only to the current conversation session.

p.state is reset when the session ends (e.g., user closes the app/browser tab or after a

period of inactivity).

intent('start checkout', p => {

 p.state.checkoutStep = 1;

 p.play('Okay, starting checkout. Step 1: confirm address.');

});

intent('confirm address', p => {

 if (p.state.checkoutStep === 1) {

 p.state.checkoutStep = 2;

 p.play('Address confirmed. Step 2: payment.');

 } else {

 p.play('We are not at the address step.');

 }

});

Choosing Data Storage

Global Variables: For data needed across all user

interactions and sessions (e.g., configuration, API keys).

p.userData : For data specific to a user that should

persist across sessions (e.g., preferences, profile info,

shopping cart).

p.state : For data specific to the current conversation

flow or session (e.g., current step in a multi-turn process,

temporary flags).

Working with External APIs

Use p.fetch() or standard Node.js modules (like axios , node-fetch) to make HTTP

requests from your script to external services.

Remember to configure API keys securely in project settings.

intent('what is the weather in $(city P:city)', async p => {

 const city = p.city.value;

 const apiKey = project.apiKeys.weather;

 const url = `https://api.weatherapi.com/v1/current.json?

key=${apiKey}&q=${city}`;

 try {

 const response = await p.fetch(url);

 const data = await response.json();

 const tempC = data.current.temp_c;

 p.play(`The current temperature in ${city} is ${tempC} degrees

Celsius.`);

 } catch (error) {

 p.play('Sorry, I could not get the weather.');

 p.log(error.message); // Log error for debugging

 }

});

Asynchronous Operations

Use async/await with p.fetch or other asynchronous

functions to avoid blocking the script execution.

The p.resolve() call is important after asynchronous

operations to signal that the intent handling is complete after

the async work finishes.

Debugging Tips

Use p.log('message') to print values and execution flow to the Debugger console.

Use the ‘Debugger’ tab in Alan AI Studio to see user input, matched intents, recognized

entities/slots, p.log messages, and responses.

Use the ‘Contexts’ tab to track context changes.

Use the ‘Visual State’ tab to see the current visual state sent to the client.

Check ‘History’ to review past interactions.

If using p.fetch , check the ‘External Calls’ tab.

Error Handling

Wrap API calls and other potentially failing operations in

try...catch blocks to provide graceful responses to the user

and log errors for debugging.

Best Practice: Modularize Script

Break down large scripts into smaller, manageable functions or files if possible (using

require or imports if your environment supports it, or just helper functions within the

main script file). This improves readability and maintenance.

Best Practice: Keep Responses Concise

Alan AI is best for short, direct interactions. Avoid long

monologues. Use the visual interface for displaying detailed

information.

Page 5 of 6 https://cheatsheetshero.com

https://cheatsheetshero.com/

Best Practice: Progressive Disclosure

Don’t ask for too much information at once. Use follow-ups and contexts to guide the user

through gathering necessary details step-by-step.

Best Practice: Provide Help/Examples

Include intents for ‘help’ or ‘what can I say/do’ that provide

examples of valid commands, especially within specific

contexts.

Best Practice: Multimodal Design

Always consider the visual feedback alongside the voice response. Use p.play() for

audible cues and p.visual() for UI updates.

Best Practice: Testing Edge Cases

Test how your voice assistant handles unexpected inputs,

misrecognitions, and errors from external services.

Page 6 of 6 https://cheatsheetshero.com

https://cheatsheetshero.com/

